Solve for b, c
b=-\frac{52}{5}=-10.4\text{, }c=\frac{39}{5}=7.8
b=\frac{52}{5}=10.4\text{, }c=-\frac{39}{5}=-7.8
Share
Copied to clipboard
3b+4c=0,c^{2}+b^{2}=169
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3b+4c=0
Solve 3b+4c=0 for b by isolating b on the left hand side of the equal sign.
3b=-4c
Subtract 4c from both sides of the equation.
b=-\frac{4}{3}c
Divide both sides by 3.
c^{2}+\left(-\frac{4}{3}c\right)^{2}=169
Substitute -\frac{4}{3}c for b in the other equation, c^{2}+b^{2}=169.
c^{2}+\frac{16}{9}c^{2}=169
Square -\frac{4}{3}c.
\frac{25}{9}c^{2}=169
Add c^{2} to \frac{16}{9}c^{2}.
\frac{25}{9}c^{2}-169=0
Subtract 169 from both sides of the equation.
c=\frac{0±\sqrt{0^{2}-4\times \frac{25}{9}\left(-169\right)}}{2\times \frac{25}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{4}{3}\right)^{2} for a, 1\times 0\left(-\frac{4}{3}\right)\times 2 for b, and -169 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±\sqrt{-4\times \frac{25}{9}\left(-169\right)}}{2\times \frac{25}{9}}
Square 1\times 0\left(-\frac{4}{3}\right)\times 2.
c=\frac{0±\sqrt{-\frac{100}{9}\left(-169\right)}}{2\times \frac{25}{9}}
Multiply -4 times 1+1\left(-\frac{4}{3}\right)^{2}.
c=\frac{0±\sqrt{\frac{16900}{9}}}{2\times \frac{25}{9}}
Multiply -\frac{100}{9} times -169.
c=\frac{0±\frac{130}{3}}{2\times \frac{25}{9}}
Take the square root of \frac{16900}{9}.
c=\frac{0±\frac{130}{3}}{\frac{50}{9}}
Multiply 2 times 1+1\left(-\frac{4}{3}\right)^{2}.
c=\frac{39}{5}
Now solve the equation c=\frac{0±\frac{130}{3}}{\frac{50}{9}} when ± is plus.
c=-\frac{39}{5}
Now solve the equation c=\frac{0±\frac{130}{3}}{\frac{50}{9}} when ± is minus.
b=-\frac{4}{3}\times \frac{39}{5}
There are two solutions for c: \frac{39}{5} and -\frac{39}{5}. Substitute \frac{39}{5} for c in the equation b=-\frac{4}{3}c to find the corresponding solution for b that satisfies both equations.
b=-\frac{52}{5}
Multiply -\frac{4}{3} times \frac{39}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
b=-\frac{4}{3}\left(-\frac{39}{5}\right)
Now substitute -\frac{39}{5} for c in the equation b=-\frac{4}{3}c and solve to find the corresponding solution for b that satisfies both equations.
b=\frac{52}{5}
Multiply -\frac{4}{3} times -\frac{39}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
b=-\frac{52}{5},c=\frac{39}{5}\text{ or }b=\frac{52}{5},c=-\frac{39}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}