Skip to main content
Solve for x, y
Tick mark Image
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

ax+y=1,y^{2}+x^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
ax+y=1
Solve ax+y=1 for x by isolating x on the left hand side of the equal sign.
ax=-y+1
Subtract y from both sides of the equation.
x=\left(-\frac{1}{a}\right)y+\frac{1}{a}
Divide both sides by a.
y^{2}+\left(\left(-\frac{1}{a}\right)y+\frac{1}{a}\right)^{2}=1
Substitute \left(-\frac{1}{a}\right)y+\frac{1}{a} for x in the other equation, y^{2}+x^{2}=1.
y^{2}+\left(-\frac{1}{a}\right)^{2}y^{2}+2\left(-\frac{1}{a}\right)\times \frac{1}{a}y+\left(\frac{1}{a}\right)^{2}=1
Square \left(-\frac{1}{a}\right)y+\frac{1}{a}.
\left(1+\left(-\frac{1}{a}\right)^{2}\right)y^{2}+2\left(-\frac{1}{a}\right)\times \frac{1}{a}y+\left(\frac{1}{a}\right)^{2}=1
Add y^{2} to \left(-\frac{1}{a}\right)^{2}y^{2}.
\left(1+\left(-\frac{1}{a}\right)^{2}\right)y^{2}+2\left(-\frac{1}{a}\right)\times \frac{1}{a}y+\left(\frac{1}{a}\right)^{2}-1=0
Subtract 1 from both sides of the equation.
y=\frac{-2\left(-\frac{1}{a}\right)\times \frac{1}{a}±\sqrt{\left(2\left(-\frac{1}{a}\right)\times \frac{1}{a}\right)^{2}-4\left(1+\left(-\frac{1}{a}\right)^{2}\right)\left(-1+\frac{1}{a^{2}}\right)}}{2\left(1+\left(-\frac{1}{a}\right)^{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{1}{a}\right)^{2} for a, 1\times 2\left(-\frac{1}{a}\right)\times \frac{1}{a} for b, and -1+\frac{1}{a^{2}} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-2\left(-\frac{1}{a}\right)\times \frac{1}{a}±\sqrt{\frac{4}{a^{4}}-4\left(1+\left(-\frac{1}{a}\right)^{2}\right)\left(-1+\frac{1}{a^{2}}\right)}}{2\left(1+\left(-\frac{1}{a}\right)^{2}\right)}
Square 1\times 2\left(-\frac{1}{a}\right)\times \frac{1}{a}.
y=\frac{-2\left(-\frac{1}{a}\right)\times \frac{1}{a}±\sqrt{\frac{4}{a^{4}}+\left(-4-\frac{4}{a^{2}}\right)\left(-1+\frac{1}{a^{2}}\right)}}{2\left(1+\left(-\frac{1}{a}\right)^{2}\right)}
Multiply -4 times 1+1\left(-\frac{1}{a}\right)^{2}.
y=\frac{-2\left(-\frac{1}{a}\right)\times \frac{1}{a}±\sqrt{\frac{4}{a^{4}}+4-\frac{4}{a^{4}}}}{2\left(1+\left(-\frac{1}{a}\right)^{2}\right)}
Multiply -4-\frac{4}{a^{2}} times -1+\frac{1}{a^{2}}.
y=\frac{-2\left(-\frac{1}{a}\right)\times \frac{1}{a}±\sqrt{4}}{2\left(1+\left(-\frac{1}{a}\right)^{2}\right)}
Add \frac{4}{a^{4}} to -\frac{4}{a^{4}}+4.
y=\frac{-2\left(-\frac{1}{a}\right)\times \frac{1}{a}±2}{2\left(1+\left(-\frac{1}{a}\right)^{2}\right)}
Take the square root of 4.
y=\frac{\frac{2}{a^{2}}±2}{2+\frac{2}{a^{2}}}
Multiply 2 times 1+1\left(-\frac{1}{a}\right)^{2}.
y=\frac{2+\frac{2}{a^{2}}}{2+\frac{2}{a^{2}}}
Now solve the equation y=\frac{\frac{2}{a^{2}}±2}{2+\frac{2}{a^{2}}} when ± is plus. Add \frac{2}{a^{2}} to 2.
y=1
Divide 2+\frac{2}{a^{2}} by 2+\frac{2}{a^{2}}.
y=\frac{-2+\frac{2}{a^{2}}}{2+\frac{2}{a^{2}}}
Now solve the equation y=\frac{\frac{2}{a^{2}}±2}{2+\frac{2}{a^{2}}} when ± is minus. Subtract 2 from \frac{2}{a^{2}}.
y=-\frac{a^{2}-1}{a^{2}+1}
Divide \frac{2}{a^{2}}-2 by 2+\frac{2}{a^{2}}.
x=\frac{-1+1}{a}
There are two solutions for y: 1 and -\frac{a^{2}-1}{1+a^{2}}. Substitute 1 for y in the equation x=\left(-\frac{1}{a}\right)y+\frac{1}{a} to find the corresponding solution for x that satisfies both equations.
x=\frac{1-1}{a}
Add 1\left(-\frac{1}{a}\right) to \frac{1}{a}.
x=\left(-\frac{1}{a}\right)\left(-\frac{a^{2}-1}{a^{2}+1}\right)+\frac{1}{a}
Now substitute -\frac{a^{2}-1}{1+a^{2}} for y in the equation x=\left(-\frac{1}{a}\right)y+\frac{1}{a} and solve to find the corresponding solution for x that satisfies both equations.
x=\left(-\frac{a^{2}-1}{a^{2}+1}\right)\left(-\frac{1}{a}\right)+\frac{1}{a}
Multiply -\frac{1}{a} times -\frac{a^{2}-1}{1+a^{2}}.
x=\frac{1-1}{a},y=1\text{ or }x=\left(-\frac{a^{2}-1}{a^{2}+1}\right)\left(-\frac{1}{a}\right)+\frac{1}{a},y=-\frac{a^{2}-1}{a^{2}+1}
The system is now solved.