Solve for x, y
x=0\text{, }y=1
x=\frac{2a}{a^{2}+1}\text{, }y=\frac{1-a^{2}}{a^{2}+1}
Solve for x, y (complex solution)
\left\{\begin{matrix}\\x=0\text{, }y=1\text{, }&\text{unconditionally}\\x=\frac{2a}{a^{2}+1}\text{, }y=\frac{1-a^{2}}{a^{2}+1}\text{, }&a\neq -i\text{ and }a\neq i\end{matrix}\right.
Graph
Share
Copied to clipboard
ax+y=1,y^{2}+x^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
ax+y=1
Solve ax+y=1 for x by isolating x on the left hand side of the equal sign.
ax=-y+1
Subtract y from both sides of the equation.
x=\left(-\frac{1}{a}\right)y+\frac{1}{a}
Divide both sides by a.
y^{2}+\left(\left(-\frac{1}{a}\right)y+\frac{1}{a}\right)^{2}=1
Substitute \left(-\frac{1}{a}\right)y+\frac{1}{a} for x in the other equation, y^{2}+x^{2}=1.
y^{2}+\left(-\frac{1}{a}\right)^{2}y^{2}+2\left(-\frac{1}{a}\right)\times \frac{1}{a}y+\left(\frac{1}{a}\right)^{2}=1
Square \left(-\frac{1}{a}\right)y+\frac{1}{a}.
\left(1+\left(-\frac{1}{a}\right)^{2}\right)y^{2}+2\left(-\frac{1}{a}\right)\times \frac{1}{a}y+\left(\frac{1}{a}\right)^{2}=1
Add y^{2} to \left(-\frac{1}{a}\right)^{2}y^{2}.
\left(1+\left(-\frac{1}{a}\right)^{2}\right)y^{2}+2\left(-\frac{1}{a}\right)\times \frac{1}{a}y+\left(\frac{1}{a}\right)^{2}-1=0
Subtract 1 from both sides of the equation.
y=\frac{-2\left(-\frac{1}{a}\right)\times \frac{1}{a}±\sqrt{\left(2\left(-\frac{1}{a}\right)\times \frac{1}{a}\right)^{2}-4\left(1+\left(-\frac{1}{a}\right)^{2}\right)\left(-1+\frac{1}{a^{2}}\right)}}{2\left(1+\left(-\frac{1}{a}\right)^{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{1}{a}\right)^{2} for a, 1\times 2\left(-\frac{1}{a}\right)\times \frac{1}{a} for b, and -1+\frac{1}{a^{2}} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-2\left(-\frac{1}{a}\right)\times \frac{1}{a}±\sqrt{\frac{4}{a^{4}}-4\left(1+\left(-\frac{1}{a}\right)^{2}\right)\left(-1+\frac{1}{a^{2}}\right)}}{2\left(1+\left(-\frac{1}{a}\right)^{2}\right)}
Square 1\times 2\left(-\frac{1}{a}\right)\times \frac{1}{a}.
y=\frac{-2\left(-\frac{1}{a}\right)\times \frac{1}{a}±\sqrt{\frac{4}{a^{4}}+\left(-4-\frac{4}{a^{2}}\right)\left(-1+\frac{1}{a^{2}}\right)}}{2\left(1+\left(-\frac{1}{a}\right)^{2}\right)}
Multiply -4 times 1+1\left(-\frac{1}{a}\right)^{2}.
y=\frac{-2\left(-\frac{1}{a}\right)\times \frac{1}{a}±\sqrt{\frac{4}{a^{4}}+4-\frac{4}{a^{4}}}}{2\left(1+\left(-\frac{1}{a}\right)^{2}\right)}
Multiply -4-\frac{4}{a^{2}} times -1+\frac{1}{a^{2}}.
y=\frac{-2\left(-\frac{1}{a}\right)\times \frac{1}{a}±\sqrt{4}}{2\left(1+\left(-\frac{1}{a}\right)^{2}\right)}
Add \frac{4}{a^{4}} to -\frac{4}{a^{4}}+4.
y=\frac{-2\left(-\frac{1}{a}\right)\times \frac{1}{a}±2}{2\left(1+\left(-\frac{1}{a}\right)^{2}\right)}
Take the square root of 4.
y=\frac{\frac{2}{a^{2}}±2}{2+\frac{2}{a^{2}}}
Multiply 2 times 1+1\left(-\frac{1}{a}\right)^{2}.
y=\frac{2+\frac{2}{a^{2}}}{2+\frac{2}{a^{2}}}
Now solve the equation y=\frac{\frac{2}{a^{2}}±2}{2+\frac{2}{a^{2}}} when ± is plus. Add \frac{2}{a^{2}} to 2.
y=1
Divide 2+\frac{2}{a^{2}} by 2+\frac{2}{a^{2}}.
y=\frac{-2+\frac{2}{a^{2}}}{2+\frac{2}{a^{2}}}
Now solve the equation y=\frac{\frac{2}{a^{2}}±2}{2+\frac{2}{a^{2}}} when ± is minus. Subtract 2 from \frac{2}{a^{2}}.
y=-\frac{a^{2}-1}{a^{2}+1}
Divide \frac{2}{a^{2}}-2 by 2+\frac{2}{a^{2}}.
x=\frac{-1+1}{a}
There are two solutions for y: 1 and -\frac{a^{2}-1}{1+a^{2}}. Substitute 1 for y in the equation x=\left(-\frac{1}{a}\right)y+\frac{1}{a} to find the corresponding solution for x that satisfies both equations.
x=\frac{1-1}{a}
Add 1\left(-\frac{1}{a}\right) to \frac{1}{a}.
x=\left(-\frac{1}{a}\right)\left(-\frac{a^{2}-1}{a^{2}+1}\right)+\frac{1}{a}
Now substitute -\frac{a^{2}-1}{1+a^{2}} for y in the equation x=\left(-\frac{1}{a}\right)y+\frac{1}{a} and solve to find the corresponding solution for x that satisfies both equations.
x=\left(-\frac{a^{2}-1}{a^{2}+1}\right)\left(-\frac{1}{a}\right)+\frac{1}{a}
Multiply -\frac{1}{a} times -\frac{a^{2}-1}{1+a^{2}}.
x=\frac{1-1}{a},y=1\text{ or }x=\left(-\frac{a^{2}-1}{a^{2}+1}\right)\left(-\frac{1}{a}\right)+\frac{1}{a},y=-\frac{a^{2}-1}{a^{2}+1}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}