Solve for a_n, n
a_{n}=\frac{64}{105}\approx 0.60952381
n=\frac{7}{8}=0.875
Share
Copied to clipboard
a_{n}=\frac{1}{\frac{7}{8}\left(\frac{7}{8}+1\right)}
Consider the first equation. Insert the known values of variables into the equation.
a_{n}=\frac{1}{\frac{7}{8}\times \frac{15}{8}}
Add \frac{7}{8} and 1 to get \frac{15}{8}.
a_{n}=\frac{1}{\frac{105}{64}}
Multiply \frac{7}{8} and \frac{15}{8} to get \frac{105}{64}.
a_{n}=1\times \frac{64}{105}
Divide 1 by \frac{105}{64} by multiplying 1 by the reciprocal of \frac{105}{64}.
a_{n}=\frac{64}{105}
Multiply 1 and \frac{64}{105} to get \frac{64}{105}.
a_{n}=\frac{64}{105} n=\frac{7}{8}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}