Solve for a_1, a_2, a_3 (complex solution)
a_{1}\in \mathrm{C}\text{, }a_{2}=\frac{28}{a_{3}}\text{, }a_{3}=-\frac{\sqrt{a_{1}^{2}-68a_{1}+1044}}{2}-\frac{a_{1}}{2}+17
a_{1}\in \mathrm{C}\text{, }a_{2}=\frac{28}{a_{3}}\text{, }a_{3}=\frac{\sqrt{a_{1}^{2}-68a_{1}+1044}}{2}-\frac{a_{1}}{2}+17
Solve for a_1, a_2, a_3
a_{1}\in (-\infty,34-4\sqrt{7}]\cup [4\sqrt{7}+34,\infty)\text{, }a_{2}=\frac{28}{a_{3}}\text{, }a_{3}=\frac{\sqrt{a_{1}^{2}-68a_{1}+1044}}{2}-\frac{a_{1}}{2}+17\text{; }a_{1}\in (-\infty,34-4\sqrt{7}]\cup [4\sqrt{7}+34,\infty)\text{, }a_{2}=\frac{28}{a_{3}}\text{, }a_{3}=-\frac{\sqrt{a_{1}^{2}-68a_{1}+1044}}{2}-\frac{a_{1}}{2}+17
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}