Skip to main content
Least Common Multiple
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

a^{5}-32=\left(a-2\right)\left(a^{4}+2a^{3}+4a^{2}+8a+16\right) x^{10}-a^{5}=\left(x^{2}-a\right)\left(x^{8}+ax^{6}+a^{2}x^{4}+x^{2}a^{3}+a^{4}\right)
Factor the expressions that are not already factored.
\left(a-2\right)\left(a-x^{2}\right)\left(-a^{4}-2a^{3}-4a^{2}-8a-16\right)\left(x^{8}+ax^{6}+a^{2}x^{4}+x^{2}a^{3}+a^{4}\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
a^{5}x^{10}-32x^{10}-a^{10}+32a^{5}
Expand the expression.