\left. \begin{array} { l } { a ^ { 2 } - 14 a ^ { 2 } b ^ { 3 } + 14 a ^ { 3 } - 2 a b ^ { 3 } } \\ { a ^ { 2 } } \\ { 4 a ^ { 2 } y - 108 x y ^ { 2 } + 27 y ^ { 3 } } \end{array} \right.
Least Common Multiple
ya^{2}\left(4a^{2}+27y^{2}-108xy\right)\left(a+14a^{2}-2b^{3}-14ab^{3}\right)
Evaluate
a\left(a+14a^{2}-2b^{3}-14ab^{3}\right),\ a^{2},\ y\left(4a^{2}+27y^{2}-108xy\right)
Share
Copied to clipboard
ya^{2}\left(4a^{2}+27y^{2}-108xy\right)\left(a+14a^{2}-2b^{3}-14ab^{3}\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
1512xy^{2}a^{3}b^{3}+216xa^{2}y^{2}b^{3}-1512xy^{2}a^{4}-108xy^{2}a^{3}-378a^{3}b^{3}y^{3}-54a^{2}b^{3}y^{3}+378y^{3}a^{4}+27a^{3}y^{3}-56yb^{3}a^{5}-8yb^{3}a^{4}+56ya^{6}+4ya^{5}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}