Solve for a, b
a=-\frac{2\sqrt{10}}{5}\approx -1.264911064\text{, }b=-\frac{\sqrt{10}}{5}\approx -0.632455532
a=\frac{2\sqrt{10}}{5}\approx 1.264911064\text{, }b=\frac{\sqrt{10}}{5}\approx 0.632455532
Share
Copied to clipboard
a-2b=0
Consider the second equation. Subtract 2b from both sides.
a-2b=0,b^{2}+a^{2}=2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
a-2b=0
Solve a-2b=0 for a by isolating a on the left hand side of the equal sign.
a=2b
Subtract -2b from both sides of the equation.
b^{2}+\left(2b\right)^{2}=2
Substitute 2b for a in the other equation, b^{2}+a^{2}=2.
b^{2}+4b^{2}=2
Square 2b.
5b^{2}=2
Add b^{2} to 4b^{2}.
5b^{2}-2=0
Subtract 2 from both sides of the equation.
b=\frac{0±\sqrt{0^{2}-4\times 5\left(-2\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 2^{2} for a, 1\times 0\times 2\times 2 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times 5\left(-2\right)}}{2\times 5}
Square 1\times 0\times 2\times 2.
b=\frac{0±\sqrt{-20\left(-2\right)}}{2\times 5}
Multiply -4 times 1+1\times 2^{2}.
b=\frac{0±\sqrt{40}}{2\times 5}
Multiply -20 times -2.
b=\frac{0±2\sqrt{10}}{2\times 5}
Take the square root of 40.
b=\frac{0±2\sqrt{10}}{10}
Multiply 2 times 1+1\times 2^{2}.
b=\frac{\sqrt{10}}{5}
Now solve the equation b=\frac{0±2\sqrt{10}}{10} when ± is plus.
b=-\frac{\sqrt{10}}{5}
Now solve the equation b=\frac{0±2\sqrt{10}}{10} when ± is minus.
a=2\times \frac{\sqrt{10}}{5}
There are two solutions for b: \frac{\sqrt{10}}{5} and -\frac{\sqrt{10}}{5}. Substitute \frac{\sqrt{10}}{5} for b in the equation a=2b to find the corresponding solution for a that satisfies both equations.
a=2\left(-\frac{\sqrt{10}}{5}\right)
Now substitute -\frac{\sqrt{10}}{5} for b in the equation a=2b and solve to find the corresponding solution for a that satisfies both equations.
a=2\times \frac{\sqrt{10}}{5},b=\frac{\sqrt{10}}{5}\text{ or }a=2\left(-\frac{\sqrt{10}}{5}\right),b=-\frac{\sqrt{10}}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}