Skip to main content
Solve for a, b
Tick mark Image

Similar Problems from Web Search

Share

a-b=5,b^{2}+a^{2}=150
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
a-b=5
Solve a-b=5 for a by isolating a on the left hand side of the equal sign.
a=b+5
Subtract -b from both sides of the equation.
b^{2}+\left(b+5\right)^{2}=150
Substitute b+5 for a in the other equation, b^{2}+a^{2}=150.
b^{2}+b^{2}+10b+25=150
Square b+5.
2b^{2}+10b+25=150
Add b^{2} to b^{2}.
2b^{2}+10b-125=0
Subtract 150 from both sides of the equation.
b=\frac{-10±\sqrt{10^{2}-4\times 2\left(-125\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 5\times 1\times 2 for b, and -125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-10±\sqrt{100-4\times 2\left(-125\right)}}{2\times 2}
Square 1\times 5\times 1\times 2.
b=\frac{-10±\sqrt{100-8\left(-125\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
b=\frac{-10±\sqrt{100+1000}}{2\times 2}
Multiply -8 times -125.
b=\frac{-10±\sqrt{1100}}{2\times 2}
Add 100 to 1000.
b=\frac{-10±10\sqrt{11}}{2\times 2}
Take the square root of 1100.
b=\frac{-10±10\sqrt{11}}{4}
Multiply 2 times 1+1\times 1^{2}.
b=\frac{10\sqrt{11}-10}{4}
Now solve the equation b=\frac{-10±10\sqrt{11}}{4} when ± is plus. Add -10 to 10\sqrt{11}.
b=\frac{5\sqrt{11}-5}{2}
Divide -10+10\sqrt{11} by 4.
b=\frac{-10\sqrt{11}-10}{4}
Now solve the equation b=\frac{-10±10\sqrt{11}}{4} when ± is minus. Subtract 10\sqrt{11} from -10.
b=\frac{-5\sqrt{11}-5}{2}
Divide -10-10\sqrt{11} by 4.
a=\frac{5\sqrt{11}-5}{2}+5
There are two solutions for b: \frac{-5+5\sqrt{11}}{2} and \frac{-5-5\sqrt{11}}{2}. Substitute \frac{-5+5\sqrt{11}}{2} for b in the equation a=b+5 to find the corresponding solution for a that satisfies both equations.
a=\frac{-5\sqrt{11}-5}{2}+5
Now substitute \frac{-5-5\sqrt{11}}{2} for b in the equation a=b+5 and solve to find the corresponding solution for a that satisfies both equations.
a=\frac{5\sqrt{11}-5}{2}+5,b=\frac{5\sqrt{11}-5}{2}\text{ or }a=\frac{-5\sqrt{11}-5}{2}+5,b=\frac{-5\sqrt{11}-5}{2}
The system is now solved.