Solve for a, b
a=\frac{5-5\sqrt{11}}{2}\approx -5.791561976\text{, }b=\frac{-5\sqrt{11}-5}{2}\approx -10.791561976
a=\frac{5\sqrt{11}+5}{2}\approx 10.791561976\text{, }b=\frac{5\sqrt{11}-5}{2}\approx 5.791561976
Share
Copied to clipboard
a-b=5,b^{2}+a^{2}=150
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
a-b=5
Solve a-b=5 for a by isolating a on the left hand side of the equal sign.
a=b+5
Subtract -b from both sides of the equation.
b^{2}+\left(b+5\right)^{2}=150
Substitute b+5 for a in the other equation, b^{2}+a^{2}=150.
b^{2}+b^{2}+10b+25=150
Square b+5.
2b^{2}+10b+25=150
Add b^{2} to b^{2}.
2b^{2}+10b-125=0
Subtract 150 from both sides of the equation.
b=\frac{-10±\sqrt{10^{2}-4\times 2\left(-125\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 5\times 1\times 2 for b, and -125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-10±\sqrt{100-4\times 2\left(-125\right)}}{2\times 2}
Square 1\times 5\times 1\times 2.
b=\frac{-10±\sqrt{100-8\left(-125\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
b=\frac{-10±\sqrt{100+1000}}{2\times 2}
Multiply -8 times -125.
b=\frac{-10±\sqrt{1100}}{2\times 2}
Add 100 to 1000.
b=\frac{-10±10\sqrt{11}}{2\times 2}
Take the square root of 1100.
b=\frac{-10±10\sqrt{11}}{4}
Multiply 2 times 1+1\times 1^{2}.
b=\frac{10\sqrt{11}-10}{4}
Now solve the equation b=\frac{-10±10\sqrt{11}}{4} when ± is plus. Add -10 to 10\sqrt{11}.
b=\frac{5\sqrt{11}-5}{2}
Divide -10+10\sqrt{11} by 4.
b=\frac{-10\sqrt{11}-10}{4}
Now solve the equation b=\frac{-10±10\sqrt{11}}{4} when ± is minus. Subtract 10\sqrt{11} from -10.
b=\frac{-5\sqrt{11}-5}{2}
Divide -10-10\sqrt{11} by 4.
a=\frac{5\sqrt{11}-5}{2}+5
There are two solutions for b: \frac{-5+5\sqrt{11}}{2} and \frac{-5-5\sqrt{11}}{2}. Substitute \frac{-5+5\sqrt{11}}{2} for b in the equation a=b+5 to find the corresponding solution for a that satisfies both equations.
a=\frac{-5\sqrt{11}-5}{2}+5
Now substitute \frac{-5-5\sqrt{11}}{2} for b in the equation a=b+5 and solve to find the corresponding solution for a that satisfies both equations.
a=\frac{5\sqrt{11}-5}{2}+5,b=\frac{5\sqrt{11}-5}{2}\text{ or }a=\frac{-5\sqrt{11}-5}{2}+5,b=\frac{-5\sqrt{11}-5}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}