Skip to main content
Solve for a, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a=x\times \frac{8}{5}
Consider the first equation. Reduce the fraction \frac{96}{60} to lowest terms by extracting and canceling out 12.
a-x\times \frac{8}{5}=0
Subtract x\times \frac{8}{5} from both sides.
a-\frac{8}{5}x=0
Multiply -1 and \frac{8}{5} to get -\frac{8}{5}.
160-a=x+10\times \frac{8}{5}
Consider the second equation. Reduce the fraction \frac{96}{60} to lowest terms by extracting and canceling out 12.
160-a=x+16
Multiply 10 and \frac{8}{5} to get 16.
160-a-x=16
Subtract x from both sides.
-a-x=16-160
Subtract 160 from both sides.
-a-x=-144
Subtract 160 from 16 to get -144.
a-\frac{8}{5}x=0,-a-x=-144
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
a-\frac{8}{5}x=0
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
a=\frac{8}{5}x
Add \frac{8x}{5} to both sides of the equation.
-\frac{8}{5}x-x=-144
Substitute \frac{8x}{5} for a in the other equation, -a-x=-144.
-\frac{13}{5}x=-144
Add -\frac{8x}{5} to -x.
x=\frac{720}{13}
Divide both sides of the equation by -\frac{13}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{8}{5}\times \frac{720}{13}
Substitute \frac{720}{13} for x in a=\frac{8}{5}x. Because the resulting equation contains only one variable, you can solve for a directly.
a=\frac{1152}{13}
Multiply \frac{8}{5} times \frac{720}{13} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a=\frac{1152}{13},x=\frac{720}{13}
The system is now solved.
a=x\times \frac{8}{5}
Consider the first equation. Reduce the fraction \frac{96}{60} to lowest terms by extracting and canceling out 12.
a-x\times \frac{8}{5}=0
Subtract x\times \frac{8}{5} from both sides.
a-\frac{8}{5}x=0
Multiply -1 and \frac{8}{5} to get -\frac{8}{5}.
160-a=x+10\times \frac{8}{5}
Consider the second equation. Reduce the fraction \frac{96}{60} to lowest terms by extracting and canceling out 12.
160-a=x+16
Multiply 10 and \frac{8}{5} to get 16.
160-a-x=16
Subtract x from both sides.
-a-x=16-160
Subtract 160 from both sides.
-a-x=-144
Subtract 160 from 16 to get -144.
a-\frac{8}{5}x=0,-a-x=-144
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-\frac{8}{5}\\-1&-1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}0\\-144\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-\frac{8}{5}\\-1&-1\end{matrix}\right))\left(\begin{matrix}1&-\frac{8}{5}\\-1&-1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{8}{5}\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\-144\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-\frac{8}{5}\\-1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{8}{5}\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\-144\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{8}{5}\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\-144\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-\frac{8}{5}\left(-1\right)\right)}&-\frac{-\frac{8}{5}}{-1-\left(-\frac{8}{5}\left(-1\right)\right)}\\-\frac{-1}{-1-\left(-\frac{8}{5}\left(-1\right)\right)}&\frac{1}{-1-\left(-\frac{8}{5}\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-144\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{13}&-\frac{8}{13}\\-\frac{5}{13}&-\frac{5}{13}\end{matrix}\right)\left(\begin{matrix}0\\-144\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{13}\left(-144\right)\\-\frac{5}{13}\left(-144\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1152}{13}\\\frac{720}{13}\end{matrix}\right)
Do the arithmetic.
a=\frac{1152}{13},x=\frac{720}{13}
Extract the matrix elements a and x.
a=x\times \frac{8}{5}
Consider the first equation. Reduce the fraction \frac{96}{60} to lowest terms by extracting and canceling out 12.
a-x\times \frac{8}{5}=0
Subtract x\times \frac{8}{5} from both sides.
a-\frac{8}{5}x=0
Multiply -1 and \frac{8}{5} to get -\frac{8}{5}.
160-a=x+10\times \frac{8}{5}
Consider the second equation. Reduce the fraction \frac{96}{60} to lowest terms by extracting and canceling out 12.
160-a=x+16
Multiply 10 and \frac{8}{5} to get 16.
160-a-x=16
Subtract x from both sides.
-a-x=16-160
Subtract 160 from both sides.
-a-x=-144
Subtract 160 from 16 to get -144.
a-\frac{8}{5}x=0,-a-x=-144
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-a-\left(-\frac{8}{5}x\right)=0,-a-x=-144
To make a and -a equal, multiply all terms on each side of the first equation by -1 and all terms on each side of the second by 1.
-a+\frac{8}{5}x=0,-a-x=-144
Simplify.
-a+a+\frac{8}{5}x+x=144
Subtract -a-x=-144 from -a+\frac{8}{5}x=0 by subtracting like terms on each side of the equal sign.
\frac{8}{5}x+x=144
Add -a to a. Terms -a and a cancel out, leaving an equation with only one variable that can be solved.
\frac{13}{5}x=144
Add \frac{8x}{5} to x.
x=\frac{720}{13}
Divide both sides of the equation by \frac{13}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
-a-\frac{720}{13}=-144
Substitute \frac{720}{13} for x in -a-x=-144. Because the resulting equation contains only one variable, you can solve for a directly.
-a=-\frac{1152}{13}
Add \frac{720}{13} to both sides of the equation.
a=\frac{1152}{13}
Divide both sides by -1.
a=\frac{1152}{13},x=\frac{720}{13}
The system is now solved.