Solve for a, b, c
a=34
b=17\left(\sqrt{5}+1\right)\approx 55.013155617
c=17\left(\sqrt{5}+3\right)\approx 89.013155617
Share
Copied to clipboard
b=\frac{1+\sqrt{5}}{2}\times 34
Consider the second equation. Insert the known values of variables into the equation.
b=17\left(1+\sqrt{5}\right)
Cancel out 2, the greatest common factor in 34 and 2.
b=17+17\sqrt{5}
Use the distributive property to multiply 17 by 1+\sqrt{5}.
c=\frac{1+\sqrt{5}}{2}\left(17+17\sqrt{5}\right)
Consider the third equation. Insert the known values of variables into the equation.
c=\frac{\left(1+\sqrt{5}\right)\left(17+17\sqrt{5}\right)}{2}
Express \frac{1+\sqrt{5}}{2}\left(17+17\sqrt{5}\right) as a single fraction.
c=\frac{17+34\sqrt{5}+17\left(\sqrt{5}\right)^{2}}{2}
Use the distributive property to multiply 1+\sqrt{5} by 17+17\sqrt{5} and combine like terms.
c=\frac{17+34\sqrt{5}+17\times 5}{2}
The square of \sqrt{5} is 5.
c=\frac{17+34\sqrt{5}+85}{2}
Multiply 17 and 5 to get 85.
c=\frac{102+34\sqrt{5}}{2}
Add 17 and 85 to get 102.
c=51+17\sqrt{5}
Divide each term of 102+34\sqrt{5} by 2 to get 51+17\sqrt{5}.
a=34 b=17+17\sqrt{5} c=51+17\sqrt{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}