Solve for a, x
x=23
a=5000
Graph
Share
Copied to clipboard
a-200x=400
Consider the first equation. Subtract 200x from both sides.
a-250x=-750
Consider the second equation. Subtract 250x from both sides.
a-200x=400,a-250x=-750
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
a-200x=400
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
a=200x+400
Add 200x to both sides of the equation.
200x+400-250x=-750
Substitute 400+200x for a in the other equation, a-250x=-750.
-50x+400=-750
Add 200x to -250x.
-50x=-1150
Subtract 400 from both sides of the equation.
x=23
Divide both sides by -50.
a=200\times 23+400
Substitute 23 for x in a=200x+400. Because the resulting equation contains only one variable, you can solve for a directly.
a=4600+400
Multiply 200 times 23.
a=5000
Add 400 to 4600.
a=5000,x=23
The system is now solved.
a-200x=400
Consider the first equation. Subtract 200x from both sides.
a-250x=-750
Consider the second equation. Subtract 250x from both sides.
a-200x=400,a-250x=-750
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-200\\1&-250\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}400\\-750\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-200\\1&-250\end{matrix}\right))\left(\begin{matrix}1&-200\\1&-250\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-200\\1&-250\end{matrix}\right))\left(\begin{matrix}400\\-750\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-200\\1&-250\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-200\\1&-250\end{matrix}\right))\left(\begin{matrix}400\\-750\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-200\\1&-250\end{matrix}\right))\left(\begin{matrix}400\\-750\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{250}{-250-\left(-200\right)}&-\frac{-200}{-250-\left(-200\right)}\\-\frac{1}{-250-\left(-200\right)}&\frac{1}{-250-\left(-200\right)}\end{matrix}\right)\left(\begin{matrix}400\\-750\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}5&-4\\\frac{1}{50}&-\frac{1}{50}\end{matrix}\right)\left(\begin{matrix}400\\-750\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}5\times 400-4\left(-750\right)\\\frac{1}{50}\times 400-\frac{1}{50}\left(-750\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}5000\\23\end{matrix}\right)
Do the arithmetic.
a=5000,x=23
Extract the matrix elements a and x.
a-200x=400
Consider the first equation. Subtract 200x from both sides.
a-250x=-750
Consider the second equation. Subtract 250x from both sides.
a-200x=400,a-250x=-750
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
a-a-200x+250x=400+750
Subtract a-250x=-750 from a-200x=400 by subtracting like terms on each side of the equal sign.
-200x+250x=400+750
Add a to -a. Terms a and -a cancel out, leaving an equation with only one variable that can be solved.
50x=400+750
Add -200x to 250x.
50x=1150
Add 400 to 750.
x=23
Divide both sides by 50.
a-250\times 23=-750
Substitute 23 for x in a-250x=-750. Because the resulting equation contains only one variable, you can solve for a directly.
a-5750=-750
Multiply -250 times 23.
a=5000
Add 5750 to both sides of the equation.
a=5000,x=23
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}