Solve for a, B, c
a=-\frac{3}{4}=-0.75
B = \frac{9}{2} = 4\frac{1}{2} = 4.5
c=\frac{1}{32}=0.03125
Share
Copied to clipboard
a=-1+4^{-1}
Consider the first equation. Calculate 3 to the power of 0 and get 1.
a=-1+\frac{1}{4}
Calculate 4 to the power of -1 and get \frac{1}{4}.
a=-\frac{3}{4}
Add -1 and \frac{1}{4} to get -\frac{3}{4}.
B=\left(\frac{1}{9}+3^{-2}\right)^{-1}
Consider the second equation. Calculate 3 to the power of -2 and get \frac{1}{9}.
B=\left(\frac{1}{9}+\frac{1}{9}\right)^{-1}
Calculate 3 to the power of -2 and get \frac{1}{9}.
B=\left(\frac{2}{9}\right)^{-1}
Add \frac{1}{9} and \frac{1}{9} to get \frac{2}{9}.
B=\frac{9}{2}
Calculate \frac{2}{9} to the power of -1 and get \frac{9}{2}.
c=\frac{\frac{1}{64}}{2^{-1}}
Consider the third equation. Calculate 8 to the power of -2 and get \frac{1}{64}.
c=\frac{\frac{1}{64}}{\frac{1}{2}}
Calculate 2 to the power of -1 and get \frac{1}{2}.
c=\frac{1}{64}\times 2
Divide \frac{1}{64} by \frac{1}{2} by multiplying \frac{1}{64} by the reciprocal of \frac{1}{2}.
c=\frac{1}{32}
Multiply \frac{1}{64} and 2 to get \frac{1}{32}.
a=-\frac{3}{4} B=\frac{9}{2} c=\frac{1}{32}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}