Solve for a, b
a=3+\sqrt{6}i\approx 3+2.449489743i\text{, }b=-\sqrt{6}i+3\approx 3-2.449489743i
a=-\sqrt{6}i+3\approx 3-2.449489743i\text{, }b=3+\sqrt{6}i\approx 3+2.449489743i
Share
Copied to clipboard
a+b=6
Solve a+b=6 for a by isolating a on the left hand side of the equal sign.
a=-b+6
Subtract b from both sides of the equation.
b^{2}+\left(-b+6\right)^{2}=6
Substitute -b+6 for a in the other equation, b^{2}+a^{2}=6.
b^{2}+b^{2}-12b+36=6
Square -b+6.
2b^{2}-12b+36=6
Add b^{2} to b^{2}.
2b^{2}-12b+30=0
Subtract 6 from both sides of the equation.
b=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 30}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 6\left(-1\right)\times 2 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 30}}{2\times 2}
Square 1\times 6\left(-1\right)\times 2.
b=\frac{-\left(-12\right)±\sqrt{144-8\times 30}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
b=\frac{-\left(-12\right)±\sqrt{144-240}}{2\times 2}
Multiply -8 times 30.
b=\frac{-\left(-12\right)±\sqrt{-96}}{2\times 2}
Add 144 to -240.
b=\frac{-\left(-12\right)±4\sqrt{6}i}{2\times 2}
Take the square root of -96.
b=\frac{12±4\sqrt{6}i}{2\times 2}
The opposite of 1\times 6\left(-1\right)\times 2 is 12.
b=\frac{12±4\sqrt{6}i}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
b=\frac{12+4\sqrt{6}i}{4}
Now solve the equation b=\frac{12±4\sqrt{6}i}{4} when ± is plus. Add 12 to 4i\sqrt{6}.
b=3+\sqrt{6}i
Divide 12+4i\sqrt{6} by 4.
b=\frac{-4\sqrt{6}i+12}{4}
Now solve the equation b=\frac{12±4\sqrt{6}i}{4} when ± is minus. Subtract 4i\sqrt{6} from 12.
b=-\sqrt{6}i+3
Divide 12-4i\sqrt{6} by 4.
a=-\left(3+\sqrt{6}i\right)+6
There are two solutions for b: 3+i\sqrt{6} and 3-i\sqrt{6}. Substitute 3+i\sqrt{6} for b in the equation a=-b+6 to find the corresponding solution for a that satisfies both equations.
a=-\left(-\sqrt{6}i+3\right)+6
Now substitute 3-i\sqrt{6} for b in the equation a=-b+6 and solve to find the corresponding solution for a that satisfies both equations.
a=-\left(3+\sqrt{6}i\right)+6,b=3+\sqrt{6}i\text{ or }a=-\left(-\sqrt{6}i+3\right)+6,b=-\sqrt{6}i+3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}