Solve for V, U
V=14\sqrt{2}\approx 19.798989873
U=14\sqrt{3}\approx 24.248711306
Share
Copied to clipboard
V=\sqrt{19.6\times 20}
Consider the first equation. Multiply 2 and 9.8 to get 19.6.
V=\sqrt{392}
Multiply 19.6 and 20 to get 392.
V=14\sqrt{2}
Factor 392=14^{2}\times 2. Rewrite the square root of the product \sqrt{14^{2}\times 2} as the product of square roots \sqrt{14^{2}}\sqrt{2}. Take the square root of 14^{2}.
U=\sqrt{\left(14\sqrt{2}\right)^{2}+14^{2}}
Consider the second equation. Insert the known values of variables into the equation.
U=\sqrt{14^{2}\left(\sqrt{2}\right)^{2}+14^{2}}
Expand \left(14\sqrt{2}\right)^{2}.
U=\sqrt{196\left(\sqrt{2}\right)^{2}+14^{2}}
Calculate 14 to the power of 2 and get 196.
U=\sqrt{196\times 2+14^{2}}
The square of \sqrt{2} is 2.
U=\sqrt{392+14^{2}}
Multiply 196 and 2 to get 392.
U=\sqrt{392+196}
Calculate 14 to the power of 2 and get 196.
U=\sqrt{588}
Add 392 and 196 to get 588.
U=14\sqrt{3}
Factor 588=14^{2}\times 3. Rewrite the square root of the product \sqrt{14^{2}\times 3} as the product of square roots \sqrt{14^{2}}\sqrt{3}. Take the square root of 14^{2}.
V=14\sqrt{2} U=14\sqrt{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}