Solve for U, K, k
U=15
K=20
k=20
Share
Copied to clipboard
7k=35\times 4
Consider the third equation. Multiply both sides by 4.
7k=140
Multiply 35 and 4 to get 140.
k=\frac{140}{7}
Divide both sides by 7.
k=20
Divide 140 by 7 to get 20.
K+\frac{3\times 20}{4}=35
Consider the second equation. Insert the known values of variables into the equation.
4K+3\times 20=140
Multiply both sides of the equation by 4.
4K+60=140
Multiply 3 and 20 to get 60.
4K=140-60
Subtract 60 from both sides.
4K=80
Subtract 60 from 140 to get 80.
K=\frac{80}{4}
Divide both sides by 4.
K=20
Divide 80 by 4 to get 20.
U=\frac{3\times 20}{4}
Consider the first equation. Insert the known values of variables into the equation.
U=\frac{60}{4}
Multiply 3 and 20 to get 60.
U=15
Divide 60 by 4 to get 15.
U=15 K=20 k=20
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}