Solve for M, C, H
M = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
C = -\frac{11}{4} = -2\frac{3}{4} = -2.75
H = \frac{121}{12} = 10\frac{1}{12} \approx 10.083333333
Share
Copied to clipboard
M=-C-H+10
Solve M+C+H=10 for M.
-C-H+10+4C+4H=32 10\left(-C-H+10\right)+18C+10H=78
Substitute -C-H+10 for M in the second and third equation.
H=-C+\frac{22}{3} C=-\frac{11}{4}
Solve these equations for H and C respectively.
H=-\left(-\frac{11}{4}\right)+\frac{22}{3}
Substitute -\frac{11}{4} for C in the equation H=-C+\frac{22}{3}.
H=\frac{121}{12}
Calculate H from H=-\left(-\frac{11}{4}\right)+\frac{22}{3}.
M=-\left(-\frac{11}{4}\right)-\frac{121}{12}+10
Substitute \frac{121}{12} for H and -\frac{11}{4} for C in the equation M=-C-H+10.
M=\frac{8}{3}
Calculate M from M=-\left(-\frac{11}{4}\right)-\frac{121}{12}+10.
M=\frac{8}{3} C=-\frac{11}{4} H=\frac{121}{12}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}