Solve for I_p, I_c
I_{p}=0.336
I_{c}=0.664
Share
Copied to clipboard
I_{p}=\frac{2.1\times 10^{-1}\times 1.6}{1}
Consider the first equation. To multiply powers of the same base, add their exponents. Add 18 and -19 to get -1.
I_{p}=\frac{2.1\times \frac{1}{10}\times 1.6}{1}
Calculate 10 to the power of -1 and get \frac{1}{10}.
I_{p}=\frac{\frac{21}{100}\times 1.6}{1}
Multiply 2.1 and \frac{1}{10} to get \frac{21}{100}.
I_{p}=\frac{\frac{42}{125}}{1}
Multiply \frac{21}{100} and 1.6 to get \frac{42}{125}.
I_{p}=\frac{42}{125}
Anything divided by one gives itself.
I_{c}=\frac{1.6\times 10^{-1}\times 4.15}{1}
Consider the second equation. To multiply powers of the same base, add their exponents. Add -19 and 18 to get -1.
I_{c}=\frac{1.6\times \frac{1}{10}\times 4.15}{1}
Calculate 10 to the power of -1 and get \frac{1}{10}.
I_{c}=\frac{\frac{4}{25}\times 4.15}{1}
Multiply 1.6 and \frac{1}{10} to get \frac{4}{25}.
I_{c}=\frac{\frac{83}{125}}{1}
Multiply \frac{4}{25} and 4.15 to get \frac{83}{125}.
I_{c}=\frac{83}{125}
Anything divided by one gives itself.
I_{p}=\frac{42}{125} I_{c}=\frac{83}{125}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}