Solve for F_1, F_2
F_{1} = \frac{1900}{103} = 18\frac{46}{103} \approx 18.446601942
F_{2} = \frac{8400}{103} = 81\frac{57}{103} \approx 81.553398058
Share
Copied to clipboard
42\times 2F_{1}=19F_{2}
Consider the second equation. Multiply both sides of the equation by 3990, the least common multiple of 95,210.
84F_{1}=19F_{2}
Multiply 42 and 2 to get 84.
84F_{1}-19F_{2}=0
Subtract 19F_{2} from both sides.
F_{1}+F_{2}=100,84F_{1}-19F_{2}=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
F_{1}+F_{2}=100
Choose one of the equations and solve it for F_{1} by isolating F_{1} on the left hand side of the equal sign.
F_{1}=-F_{2}+100
Subtract F_{2} from both sides of the equation.
84\left(-F_{2}+100\right)-19F_{2}=0
Substitute -F_{2}+100 for F_{1} in the other equation, 84F_{1}-19F_{2}=0.
-84F_{2}+8400-19F_{2}=0
Multiply 84 times -F_{2}+100.
-103F_{2}+8400=0
Add -84F_{2} to -19F_{2}.
-103F_{2}=-8400
Subtract 8400 from both sides of the equation.
F_{2}=\frac{8400}{103}
Divide both sides by -103.
F_{1}=-\frac{8400}{103}+100
Substitute \frac{8400}{103} for F_{2} in F_{1}=-F_{2}+100. Because the resulting equation contains only one variable, you can solve for F_{1} directly.
F_{1}=\frac{1900}{103}
Add 100 to -\frac{8400}{103}.
F_{1}=\frac{1900}{103},F_{2}=\frac{8400}{103}
The system is now solved.
42\times 2F_{1}=19F_{2}
Consider the second equation. Multiply both sides of the equation by 3990, the least common multiple of 95,210.
84F_{1}=19F_{2}
Multiply 42 and 2 to get 84.
84F_{1}-19F_{2}=0
Subtract 19F_{2} from both sides.
F_{1}+F_{2}=100,84F_{1}-19F_{2}=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\84&-19\end{matrix}\right)\left(\begin{matrix}F_{1}\\F_{2}\end{matrix}\right)=\left(\begin{matrix}100\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\84&-19\end{matrix}\right))\left(\begin{matrix}1&1\\84&-19\end{matrix}\right)\left(\begin{matrix}F_{1}\\F_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\84&-19\end{matrix}\right))\left(\begin{matrix}100\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\84&-19\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}F_{1}\\F_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\84&-19\end{matrix}\right))\left(\begin{matrix}100\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}F_{1}\\F_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\84&-19\end{matrix}\right))\left(\begin{matrix}100\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}F_{1}\\F_{2}\end{matrix}\right)=\left(\begin{matrix}-\frac{19}{-19-84}&-\frac{1}{-19-84}\\-\frac{84}{-19-84}&\frac{1}{-19-84}\end{matrix}\right)\left(\begin{matrix}100\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}F_{1}\\F_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{19}{103}&\frac{1}{103}\\\frac{84}{103}&-\frac{1}{103}\end{matrix}\right)\left(\begin{matrix}100\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}F_{1}\\F_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{19}{103}\times 100\\\frac{84}{103}\times 100\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}F_{1}\\F_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{1900}{103}\\\frac{8400}{103}\end{matrix}\right)
Do the arithmetic.
F_{1}=\frac{1900}{103},F_{2}=\frac{8400}{103}
Extract the matrix elements F_{1} and F_{2}.
42\times 2F_{1}=19F_{2}
Consider the second equation. Multiply both sides of the equation by 3990, the least common multiple of 95,210.
84F_{1}=19F_{2}
Multiply 42 and 2 to get 84.
84F_{1}-19F_{2}=0
Subtract 19F_{2} from both sides.
F_{1}+F_{2}=100,84F_{1}-19F_{2}=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
84F_{1}+84F_{2}=84\times 100,84F_{1}-19F_{2}=0
To make F_{1} and 84F_{1} equal, multiply all terms on each side of the first equation by 84 and all terms on each side of the second by 1.
84F_{1}+84F_{2}=8400,84F_{1}-19F_{2}=0
Simplify.
84F_{1}-84F_{1}+84F_{2}+19F_{2}=8400
Subtract 84F_{1}-19F_{2}=0 from 84F_{1}+84F_{2}=8400 by subtracting like terms on each side of the equal sign.
84F_{2}+19F_{2}=8400
Add 84F_{1} to -84F_{1}. Terms 84F_{1} and -84F_{1} cancel out, leaving an equation with only one variable that can be solved.
103F_{2}=8400
Add 84F_{2} to 19F_{2}.
F_{2}=\frac{8400}{103}
Divide both sides by 103.
84F_{1}-19\times \frac{8400}{103}=0
Substitute \frac{8400}{103} for F_{2} in 84F_{1}-19F_{2}=0. Because the resulting equation contains only one variable, you can solve for F_{1} directly.
84F_{1}-\frac{159600}{103}=0
Multiply -19 times \frac{8400}{103}.
84F_{1}=\frac{159600}{103}
Add \frac{159600}{103} to both sides of the equation.
F_{1}=\frac{1900}{103}
Divide both sides by 84.
F_{1}=\frac{1900}{103},F_{2}=\frac{8400}{103}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}