Solve for B, A
B=100
A=200
Share
Copied to clipboard
B+2A=500
Consider the first equation. Add 2A to both sides.
A+4B-2A-B=600-500
Consider the second equation. To find the opposite of 2A+B, find the opposite of each term.
-A+4B-B=600-500
Combine A and -2A to get -A.
-A+3B=600-500
Combine 4B and -B to get 3B.
-A+3B=100
Subtract 500 from 600 to get 100.
B+2A=500,3B-A=100
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
B+2A=500
Choose one of the equations and solve it for B by isolating B on the left hand side of the equal sign.
B=-2A+500
Subtract 2A from both sides of the equation.
3\left(-2A+500\right)-A=100
Substitute -2A+500 for B in the other equation, 3B-A=100.
-6A+1500-A=100
Multiply 3 times -2A+500.
-7A+1500=100
Add -6A to -A.
-7A=-1400
Subtract 1500 from both sides of the equation.
A=200
Divide both sides by -7.
B=-2\times 200+500
Substitute 200 for A in B=-2A+500. Because the resulting equation contains only one variable, you can solve for B directly.
B=-400+500
Multiply -2 times 200.
B=100
Add 500 to -400.
B=100,A=200
The system is now solved.
B+2A=500
Consider the first equation. Add 2A to both sides.
A+4B-2A-B=600-500
Consider the second equation. To find the opposite of 2A+B, find the opposite of each term.
-A+4B-B=600-500
Combine A and -2A to get -A.
-A+3B=600-500
Combine 4B and -B to get 3B.
-A+3B=100
Subtract 500 from 600 to get 100.
B+2A=500,3B-A=100
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&2\\3&-1\end{matrix}\right)\left(\begin{matrix}B\\A\end{matrix}\right)=\left(\begin{matrix}500\\100\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}1&2\\3&-1\end{matrix}\right)\left(\begin{matrix}B\\A\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}500\\100\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&2\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}B\\A\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}500\\100\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}B\\A\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}500\\100\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}B\\A\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2\times 3}&-\frac{2}{-1-2\times 3}\\-\frac{3}{-1-2\times 3}&\frac{1}{-1-2\times 3}\end{matrix}\right)\left(\begin{matrix}500\\100\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}B\\A\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\\frac{3}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}500\\100\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}B\\A\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 500+\frac{2}{7}\times 100\\\frac{3}{7}\times 500-\frac{1}{7}\times 100\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}B\\A\end{matrix}\right)=\left(\begin{matrix}100\\200\end{matrix}\right)
Do the arithmetic.
B=100,A=200
Extract the matrix elements B and A.
B+2A=500
Consider the first equation. Add 2A to both sides.
A+4B-2A-B=600-500
Consider the second equation. To find the opposite of 2A+B, find the opposite of each term.
-A+4B-B=600-500
Combine A and -2A to get -A.
-A+3B=600-500
Combine 4B and -B to get 3B.
-A+3B=100
Subtract 500 from 600 to get 100.
B+2A=500,3B-A=100
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3B+3\times 2A=3\times 500,3B-A=100
To make B and 3B equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 1.
3B+6A=1500,3B-A=100
Simplify.
3B-3B+6A+A=1500-100
Subtract 3B-A=100 from 3B+6A=1500 by subtracting like terms on each side of the equal sign.
6A+A=1500-100
Add 3B to -3B. Terms 3B and -3B cancel out, leaving an equation with only one variable that can be solved.
7A=1500-100
Add 6A to A.
7A=1400
Add 1500 to -100.
A=200
Divide both sides by 7.
3B-200=100
Substitute 200 for A in 3B-A=100. Because the resulting equation contains only one variable, you can solve for B directly.
3B=300
Add 200 to both sides of the equation.
B=100
Divide both sides by 3.
B=100,A=200
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}