Solve for B, C
B=\frac{1}{33}\approx 0.03030303
C = \frac{289}{21} = 13\frac{16}{21} \approx 13.761904762
Share
Copied to clipboard
B=\frac{1}{3\times 11}
Consider the first equation. Cancel out 3^{8}\times 11^{2} in both numerator and denominator.
B=\frac{1}{33}
Multiply 3 and 11 to get 33.
C=\frac{9^{2}\times 17^{2}}{7\times 3^{5}}
Consider the second equation. Cancel out 17 in both numerator and denominator.
C=\frac{81\times 17^{2}}{7\times 3^{5}}
Calculate 9 to the power of 2 and get 81.
C=\frac{81\times 289}{7\times 3^{5}}
Calculate 17 to the power of 2 and get 289.
C=\frac{23409}{7\times 3^{5}}
Multiply 81 and 289 to get 23409.
C=\frac{23409}{7\times 243}
Calculate 3 to the power of 5 and get 243.
C=\frac{23409}{1701}
Multiply 7 and 243 to get 1701.
C=\frac{289}{21}
Reduce the fraction \frac{23409}{1701} to lowest terms by extracting and canceling out 81.
B=\frac{1}{33} C=\frac{289}{21}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}