Skip to main content
Solve for A, B, Γ
Tick mark Image

Share

A=\frac{1}{9}\left(2\times 6-3^{2}\right)\times \frac{1}{27}
Consider the first equation. Subtract \frac{1}{3} from \frac{4}{9} to get \frac{1}{9}.
A=\frac{1}{9}\left(12-3^{2}\right)\times \frac{1}{27}
Multiply 2 and 6 to get 12.
A=\frac{1}{9}\left(12-9\right)\times \frac{1}{27}
Calculate 3 to the power of 2 and get 9.
A=\frac{1}{9}\times 3\times \frac{1}{27}
Subtract 9 from 12 to get 3.
A=\frac{1}{3}\times \frac{1}{27}
Multiply \frac{1}{9} and 3 to get \frac{1}{3}.
A=\frac{1}{81}
Multiply \frac{1}{3} and \frac{1}{27} to get \frac{1}{81}.
B=\frac{4+1}{2}\times \frac{2}{5}+1-\left(\frac{3}{2}\right)^{2}+\left(1-\frac{1}{2}\right)^{2}
Consider the second equation. Multiply 2 and 2 to get 4.
B=\frac{5}{2}\times \frac{2}{5}+1-\left(\frac{3}{2}\right)^{2}+\left(1-\frac{1}{2}\right)^{2}
Add 4 and 1 to get 5.
B=1+1-\left(\frac{3}{2}\right)^{2}+\left(1-\frac{1}{2}\right)^{2}
Multiply \frac{5}{2} and \frac{2}{5} to get 1.
B=2-\left(\frac{3}{2}\right)^{2}+\left(1-\frac{1}{2}\right)^{2}
Add 1 and 1 to get 2.
B=2-\frac{9}{4}+\left(1-\frac{1}{2}\right)^{2}
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
B=-\frac{1}{4}+\left(1-\frac{1}{2}\right)^{2}
Subtract \frac{9}{4} from 2 to get -\frac{1}{4}.
B=-\frac{1}{4}+\left(\frac{1}{2}\right)^{2}
Subtract \frac{1}{2} from 1 to get \frac{1}{2}.
B=-\frac{1}{4}+\frac{1}{4}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
B=0
Add -\frac{1}{4} and \frac{1}{4} to get 0.
\Gamma =\frac{250}{50}+\frac{18-\frac{4\times 4+3}{4}}{\frac{1}{4}}+20+\frac{125}{5^{3}}
Consider the third equation. Add 225 and 25 to get 250.
\Gamma =5+\frac{18-\frac{4\times 4+3}{4}}{\frac{1}{4}}+20+\frac{125}{5^{3}}
Divide 250 by 50 to get 5.
\Gamma =5+\frac{18-\frac{16+3}{4}}{\frac{1}{4}}+20+\frac{125}{5^{3}}
Multiply 4 and 4 to get 16.
\Gamma =5+\frac{18-\frac{19}{4}}{\frac{1}{4}}+20+\frac{125}{5^{3}}
Add 16 and 3 to get 19.
\Gamma =5+\frac{\frac{53}{4}}{\frac{1}{4}}+20+\frac{125}{5^{3}}
Subtract \frac{19}{4} from 18 to get \frac{53}{4}.
\Gamma =5+\frac{53}{4}\times 4+20+\frac{125}{5^{3}}
Divide \frac{53}{4} by \frac{1}{4} by multiplying \frac{53}{4} by the reciprocal of \frac{1}{4}.
\Gamma =5+53+20+\frac{125}{5^{3}}
Multiply \frac{53}{4} and 4 to get 53.
\Gamma =58+20+\frac{125}{5^{3}}
Add 5 and 53 to get 58.
\Gamma =78+\frac{125}{5^{3}}
Add 58 and 20 to get 78.
\Gamma =78+\frac{125}{125}
Calculate 5 to the power of 3 and get 125.
\Gamma =78+1
Divide 125 by 125 to get 1.
\Gamma =79
Add 78 and 1 to get 79.
A=\frac{1}{81} B=0 \Gamma =79
The system is now solved.