Solve for A, C, D, B
A=120.5104
C=964.0832
D=241.0208
B=241.1458
Share
Copied to clipboard
D=2\times 120.5104
Consider the third equation. Insert the known values of variables into the equation.
D=241.0208
Multiply 2 and 120.5104 to get 241.0208.
C=4\times 241.0208
Consider the second equation. Insert the known values of variables into the equation.
C=964.0832
Multiply 4 and 241.0208 to get 964.0832.
120.5104+964.0832\times 241.0208=B\times 964.0832
Consider the first equation. Insert the known values of variables into the equation.
120.5104+232364.10413056=B\times 964.0832
Multiply 964.0832 and 241.0208 to get 232364.10413056.
232484.61453056=B\times 964.0832
Add 120.5104 and 232364.10413056 to get 232484.61453056.
B\times 964.0832=232484.61453056
Swap sides so that all variable terms are on the left hand side.
B=\frac{232484.61453056}{964.0832}
Divide both sides by 964.0832.
B=\frac{23248461453056}{96408320000}
Expand \frac{232484.61453056}{964.0832} by multiplying both numerator and the denominator by 100000000.
B=\frac{1205729}{5000}
Reduce the fraction \frac{23248461453056}{96408320000} to lowest terms by extracting and canceling out 19281664.
A=120.5104 C=964.0832 D=241.0208 B=\frac{1205729}{5000}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}