Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{1}+x_{2}+x_{3}=1 100x_{1}+89x_{2}+2x_{3}=72 94x_{1}+3x_{2}=46
Reorder the equations.
x_{1}=-x_{2}-x_{3}+1
Solve x_{1}+x_{2}+x_{3}=1 for x_{1}.
100\left(-x_{2}-x_{3}+1\right)+89x_{2}+2x_{3}=72 94\left(-x_{2}-x_{3}+1\right)+3x_{2}=46
Substitute -x_{2}-x_{3}+1 for x_{1} in the second and third equation.
x_{2}=\frac{28}{11}-\frac{98}{11}x_{3} x_{3}=\frac{24}{47}-\frac{91}{94}x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=\frac{24}{47}-\frac{91}{94}\left(\frac{28}{11}-\frac{98}{11}x_{3}\right)
Substitute \frac{28}{11}-\frac{98}{11}x_{3} for x_{2} in the equation x_{3}=\frac{24}{47}-\frac{91}{94}x_{2}.
x_{3}=\frac{505}{1971}
Solve x_{3}=\frac{24}{47}-\frac{91}{94}\left(\frac{28}{11}-\frac{98}{11}x_{3}\right) for x_{3}.
x_{2}=\frac{28}{11}-\frac{98}{11}\times \frac{505}{1971}
Substitute \frac{505}{1971} for x_{3} in the equation x_{2}=\frac{28}{11}-\frac{98}{11}x_{3}.
x_{2}=\frac{518}{1971}
Calculate x_{2} from x_{2}=\frac{28}{11}-\frac{98}{11}\times \frac{505}{1971}.
x_{1}=-\frac{518}{1971}-\frac{505}{1971}+1
Substitute \frac{518}{1971} for x_{2} and \frac{505}{1971} for x_{3} in the equation x_{1}=-x_{2}-x_{3}+1.
x_{1}=\frac{316}{657}
Calculate x_{1} from x_{1}=-\frac{518}{1971}-\frac{505}{1971}+1.
x_{1}=\frac{316}{657} x_{2}=\frac{518}{1971} x_{3}=\frac{505}{1971}
The system is now solved.