Solve for m, n
m=12
n=10
Share
Copied to clipboard
9m+7n=178,9m+6n=168
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
9m+7n=178
Choose one of the equations and solve it for m by isolating m on the left hand side of the equal sign.
9m=-7n+178
Subtract 7n from both sides of the equation.
m=\frac{1}{9}\left(-7n+178\right)
Divide both sides by 9.
m=-\frac{7}{9}n+\frac{178}{9}
Multiply \frac{1}{9} times -7n+178.
9\left(-\frac{7}{9}n+\frac{178}{9}\right)+6n=168
Substitute \frac{-7n+178}{9} for m in the other equation, 9m+6n=168.
-7n+178+6n=168
Multiply 9 times \frac{-7n+178}{9}.
-n+178=168
Add -7n to 6n.
-n=-10
Subtract 178 from both sides of the equation.
n=10
Divide both sides by -1.
m=-\frac{7}{9}\times 10+\frac{178}{9}
Substitute 10 for n in m=-\frac{7}{9}n+\frac{178}{9}. Because the resulting equation contains only one variable, you can solve for m directly.
m=\frac{-70+178}{9}
Multiply -\frac{7}{9} times 10.
m=12
Add \frac{178}{9} to -\frac{70}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
m=12,n=10
The system is now solved.
9m+7n=178,9m+6n=168
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}9&7\\9&6\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}178\\168\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}9&7\\9&6\end{matrix}\right))\left(\begin{matrix}9&7\\9&6\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}9&7\\9&6\end{matrix}\right))\left(\begin{matrix}178\\168\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}9&7\\9&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}9&7\\9&6\end{matrix}\right))\left(\begin{matrix}178\\168\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}9&7\\9&6\end{matrix}\right))\left(\begin{matrix}178\\168\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{6}{9\times 6-7\times 9}&-\frac{7}{9\times 6-7\times 9}\\-\frac{9}{9\times 6-7\times 9}&\frac{9}{9\times 6-7\times 9}\end{matrix}\right)\left(\begin{matrix}178\\168\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&\frac{7}{9}\\1&-1\end{matrix}\right)\left(\begin{matrix}178\\168\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\times 178+\frac{7}{9}\times 168\\178-168\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}12\\10\end{matrix}\right)
Do the arithmetic.
m=12,n=10
Extract the matrix elements m and n.
9m+7n=178,9m+6n=168
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
9m-9m+7n-6n=178-168
Subtract 9m+6n=168 from 9m+7n=178 by subtracting like terms on each side of the equal sign.
7n-6n=178-168
Add 9m to -9m. Terms 9m and -9m cancel out, leaving an equation with only one variable that can be solved.
n=178-168
Add 7n to -6n.
n=10
Add 178 to -168.
9m+6\times 10=168
Substitute 10 for n in 9m+6n=168. Because the resulting equation contains only one variable, you can solve for m directly.
9m+60=168
Multiply 6 times 10.
9m=108
Subtract 60 from both sides of the equation.
m=12
Divide both sides by 9.
m=12,n=10
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}