Skip to main content
Solve for c, m
Tick mark Image

Similar Problems from Web Search

Share

9c+4100m=3264,4100c+1994800m=1537280
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
9c+4100m=3264
Choose one of the equations and solve it for c by isolating c on the left hand side of the equal sign.
9c=-4100m+3264
Subtract 4100m from both sides of the equation.
c=\frac{1}{9}\left(-4100m+3264\right)
Divide both sides by 9.
c=-\frac{4100}{9}m+\frac{1088}{3}
Multiply \frac{1}{9} times -4100m+3264.
4100\left(-\frac{4100}{9}m+\frac{1088}{3}\right)+1994800m=1537280
Substitute -\frac{4100m}{9}+\frac{1088}{3} for c in the other equation, 4100c+1994800m=1537280.
-\frac{16810000}{9}m+\frac{4460800}{3}+1994800m=1537280
Multiply 4100 times -\frac{4100m}{9}+\frac{1088}{3}.
\frac{1143200}{9}m+\frac{4460800}{3}=1537280
Add -\frac{16810000m}{9} to 1994800m.
\frac{1143200}{9}m=\frac{151040}{3}
Subtract \frac{4460800}{3} from both sides of the equation.
m=\frac{2832}{7145}
Divide both sides of the equation by \frac{1143200}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
c=-\frac{4100}{9}\times \frac{2832}{7145}+\frac{1088}{3}
Substitute \frac{2832}{7145} for m in c=-\frac{4100}{9}m+\frac{1088}{3}. Because the resulting equation contains only one variable, you can solve for c directly.
c=-\frac{774080}{4287}+\frac{1088}{3}
Multiply -\frac{4100}{9} times \frac{2832}{7145} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
c=\frac{260224}{1429}
Add \frac{1088}{3} to -\frac{774080}{4287} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
c=\frac{260224}{1429},m=\frac{2832}{7145}
The system is now solved.
9c+4100m=3264,4100c+1994800m=1537280
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}9&4100\\4100&1994800\end{matrix}\right)\left(\begin{matrix}c\\m\end{matrix}\right)=\left(\begin{matrix}3264\\1537280\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}9&4100\\4100&1994800\end{matrix}\right))\left(\begin{matrix}9&4100\\4100&1994800\end{matrix}\right)\left(\begin{matrix}c\\m\end{matrix}\right)=inverse(\left(\begin{matrix}9&4100\\4100&1994800\end{matrix}\right))\left(\begin{matrix}3264\\1537280\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}9&4100\\4100&1994800\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}c\\m\end{matrix}\right)=inverse(\left(\begin{matrix}9&4100\\4100&1994800\end{matrix}\right))\left(\begin{matrix}3264\\1537280\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}c\\m\end{matrix}\right)=inverse(\left(\begin{matrix}9&4100\\4100&1994800\end{matrix}\right))\left(\begin{matrix}3264\\1537280\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}c\\m\end{matrix}\right)=\left(\begin{matrix}\frac{1994800}{9\times 1994800-4100\times 4100}&-\frac{4100}{9\times 1994800-4100\times 4100}\\-\frac{4100}{9\times 1994800-4100\times 4100}&\frac{9}{9\times 1994800-4100\times 4100}\end{matrix}\right)\left(\begin{matrix}3264\\1537280\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}c\\m\end{matrix}\right)=\left(\begin{matrix}\frac{4987}{2858}&-\frac{41}{11432}\\-\frac{41}{11432}&\frac{9}{1143200}\end{matrix}\right)\left(\begin{matrix}3264\\1537280\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}c\\m\end{matrix}\right)=\left(\begin{matrix}\frac{4987}{2858}\times 3264-\frac{41}{11432}\times 1537280\\-\frac{41}{11432}\times 3264+\frac{9}{1143200}\times 1537280\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}c\\m\end{matrix}\right)=\left(\begin{matrix}\frac{260224}{1429}\\\frac{2832}{7145}\end{matrix}\right)
Do the arithmetic.
c=\frac{260224}{1429},m=\frac{2832}{7145}
Extract the matrix elements c and m.
9c+4100m=3264,4100c+1994800m=1537280
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4100\times 9c+4100\times 4100m=4100\times 3264,9\times 4100c+9\times 1994800m=9\times 1537280
To make 9c and 4100c equal, multiply all terms on each side of the first equation by 4100 and all terms on each side of the second by 9.
36900c+16810000m=13382400,36900c+17953200m=13835520
Simplify.
36900c-36900c+16810000m-17953200m=13382400-13835520
Subtract 36900c+17953200m=13835520 from 36900c+16810000m=13382400 by subtracting like terms on each side of the equal sign.
16810000m-17953200m=13382400-13835520
Add 36900c to -36900c. Terms 36900c and -36900c cancel out, leaving an equation with only one variable that can be solved.
-1143200m=13382400-13835520
Add 16810000m to -17953200m.
-1143200m=-453120
Add 13382400 to -13835520.
m=\frac{2832}{7145}
Divide both sides by -1143200.
4100c+1994800\times \frac{2832}{7145}=1537280
Substitute \frac{2832}{7145} for m in 4100c+1994800m=1537280. Because the resulting equation contains only one variable, you can solve for c directly.
4100c+\frac{1129854720}{1429}=1537280
Multiply 1994800 times \frac{2832}{7145}.
4100c=\frac{1066918400}{1429}
Subtract \frac{1129854720}{1429} from both sides of the equation.
c=\frac{260224}{1429}
Divide both sides by 4100.
c=\frac{260224}{1429},m=\frac{2832}{7145}
The system is now solved.