Solve for b, L
b=10
L=9
Share
Copied to clipboard
9b+20L=270,b+L=19
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
9b+20L=270
Choose one of the equations and solve it for b by isolating b on the left hand side of the equal sign.
9b=-20L+270
Subtract 20L from both sides of the equation.
b=\frac{1}{9}\left(-20L+270\right)
Divide both sides by 9.
b=-\frac{20}{9}L+30
Multiply \frac{1}{9} times -20L+270.
-\frac{20}{9}L+30+L=19
Substitute -\frac{20L}{9}+30 for b in the other equation, b+L=19.
-\frac{11}{9}L+30=19
Add -\frac{20L}{9} to L.
-\frac{11}{9}L=-11
Subtract 30 from both sides of the equation.
L=9
Divide both sides of the equation by -\frac{11}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
b=-\frac{20}{9}\times 9+30
Substitute 9 for L in b=-\frac{20}{9}L+30. Because the resulting equation contains only one variable, you can solve for b directly.
b=-20+30
Multiply -\frac{20}{9} times 9.
b=10
Add 30 to -20.
b=10,L=9
The system is now solved.
9b+20L=270,b+L=19
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}9&20\\1&1\end{matrix}\right)\left(\begin{matrix}b\\L\end{matrix}\right)=\left(\begin{matrix}270\\19\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}9&20\\1&1\end{matrix}\right))\left(\begin{matrix}9&20\\1&1\end{matrix}\right)\left(\begin{matrix}b\\L\end{matrix}\right)=inverse(\left(\begin{matrix}9&20\\1&1\end{matrix}\right))\left(\begin{matrix}270\\19\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}9&20\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}b\\L\end{matrix}\right)=inverse(\left(\begin{matrix}9&20\\1&1\end{matrix}\right))\left(\begin{matrix}270\\19\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}b\\L\end{matrix}\right)=inverse(\left(\begin{matrix}9&20\\1&1\end{matrix}\right))\left(\begin{matrix}270\\19\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}b\\L\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9-20}&-\frac{20}{9-20}\\-\frac{1}{9-20}&\frac{9}{9-20}\end{matrix}\right)\left(\begin{matrix}270\\19\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}b\\L\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{11}&\frac{20}{11}\\\frac{1}{11}&-\frac{9}{11}\end{matrix}\right)\left(\begin{matrix}270\\19\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}b\\L\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{11}\times 270+\frac{20}{11}\times 19\\\frac{1}{11}\times 270-\frac{9}{11}\times 19\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}b\\L\end{matrix}\right)=\left(\begin{matrix}10\\9\end{matrix}\right)
Do the arithmetic.
b=10,L=9
Extract the matrix elements b and L.
9b+20L=270,b+L=19
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
9b+20L=270,9b+9L=9\times 19
To make 9b and b equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 9.
9b+20L=270,9b+9L=171
Simplify.
9b-9b+20L-9L=270-171
Subtract 9b+9L=171 from 9b+20L=270 by subtracting like terms on each side of the equal sign.
20L-9L=270-171
Add 9b to -9b. Terms 9b and -9b cancel out, leaving an equation with only one variable that can be solved.
11L=270-171
Add 20L to -9L.
11L=99
Add 270 to -171.
L=9
Divide both sides by 11.
b+9=19
Substitute 9 for L in b+L=19. Because the resulting equation contains only one variable, you can solve for b directly.
b=10
Subtract 9 from both sides of the equation.
b=10,L=9
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}