Solve for x, y
x=400
y=20
Graph
Share
Copied to clipboard
x+20y=800
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
x+15y=700
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
x+20y=800,x+15y=700
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+20y=800
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-20y+800
Subtract 20y from both sides of the equation.
-20y+800+15y=700
Substitute -20y+800 for x in the other equation, x+15y=700.
-5y+800=700
Add -20y to 15y.
-5y=-100
Subtract 800 from both sides of the equation.
y=20
Divide both sides by -5.
x=-20\times 20+800
Substitute 20 for y in x=-20y+800. Because the resulting equation contains only one variable, you can solve for x directly.
x=-400+800
Multiply -20 times 20.
x=400
Add 800 to -400.
x=400,y=20
The system is now solved.
x+20y=800
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
x+15y=700
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
x+20y=800,x+15y=700
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}800\\700\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\700\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&20\\1&15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\700\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\700\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{15-20}&-\frac{20}{15-20}\\-\frac{1}{15-20}&\frac{1}{15-20}\end{matrix}\right)\left(\begin{matrix}800\\700\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&4\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}800\\700\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 800+4\times 700\\\frac{1}{5}\times 800-\frac{1}{5}\times 700\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}400\\20\end{matrix}\right)
Do the arithmetic.
x=400,y=20
Extract the matrix elements x and y.
x+20y=800
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
x+15y=700
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
x+20y=800,x+15y=700
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x+20y-15y=800-700
Subtract x+15y=700 from x+20y=800 by subtracting like terms on each side of the equal sign.
20y-15y=800-700
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
5y=800-700
Add 20y to -15y.
5y=100
Add 800 to -700.
y=20
Divide both sides by 5.
x+15\times 20=700
Substitute 20 for y in x+15y=700. Because the resulting equation contains only one variable, you can solve for x directly.
x+300=700
Multiply 15 times 20.
x=400
Subtract 300 from both sides of the equation.
x=400,y=20
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}