Solve for x, y
x=\frac{3\lambda }{2}+0.025
y=-\frac{\lambda }{2}+0.025
Graph
Share
Copied to clipboard
160y+80\lambda =4,3y+x=0.1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
160y+80\lambda =4
Pick one of the two equations which is more simple to solve for y by isolating y on the left hand side of the equal sign.
160y=4-80\lambda
Subtract 80\lambda from both sides of the equation.
y=-\frac{\lambda }{2}+\frac{1}{40}
Divide both sides by 160.
3\left(-\frac{\lambda }{2}+\frac{1}{40}\right)+x=0.1
Substitute \frac{1}{40}-\frac{\lambda }{2} for y in the other equation, 3y+x=0.1.
-\frac{3\lambda }{2}+\frac{3}{40}+x=0.1
Multiply 3 times \frac{1}{40}-\frac{\lambda }{2}.
x=\frac{3\lambda }{2}+\frac{1}{40}
Subtract \frac{3}{40}-\frac{3\lambda }{2} from both sides of the equation.
y=-\frac{\lambda }{2}+\frac{1}{40},x=\frac{3\lambda }{2}+\frac{1}{40}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}