Solve for x, y
x=\frac{27}{2}=13.5\text{, }y=-22
x=\frac{3}{2}=1.5\text{, }y=2
Graph
Share
Copied to clipboard
2x+y-5=0,-3y^{2}+8x^{2}=6
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+y-5=0
Solve 2x+y-5=0 for x by isolating x on the left hand side of the equal sign.
2x+y=5
Add 5 to both sides of the equation.
2x=-y+5
Subtract y from both sides of the equation.
x=-\frac{1}{2}y+\frac{5}{2}
Divide both sides by 2.
-3y^{2}+8\left(-\frac{1}{2}y+\frac{5}{2}\right)^{2}=6
Substitute -\frac{1}{2}y+\frac{5}{2} for x in the other equation, -3y^{2}+8x^{2}=6.
-3y^{2}+8\left(\frac{1}{4}y^{2}-\frac{5}{2}y+\frac{25}{4}\right)=6
Square -\frac{1}{2}y+\frac{5}{2}.
-3y^{2}+2y^{2}-20y+50=6
Multiply 8 times \frac{1}{4}y^{2}-\frac{5}{2}y+\frac{25}{4}.
-y^{2}-20y+50=6
Add -3y^{2} to 2y^{2}.
-y^{2}-20y+44=0
Subtract 6 from both sides of the equation.
y=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\left(-1\right)\times 44}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3+8\left(-\frac{1}{2}\right)^{2} for a, 8\times \frac{5}{2}\left(-\frac{1}{2}\right)\times 2 for b, and 44 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-20\right)±\sqrt{400-4\left(-1\right)\times 44}}{2\left(-1\right)}
Square 8\times \frac{5}{2}\left(-\frac{1}{2}\right)\times 2.
y=\frac{-\left(-20\right)±\sqrt{400+4\times 44}}{2\left(-1\right)}
Multiply -4 times -3+8\left(-\frac{1}{2}\right)^{2}.
y=\frac{-\left(-20\right)±\sqrt{400+176}}{2\left(-1\right)}
Multiply 4 times 44.
y=\frac{-\left(-20\right)±\sqrt{576}}{2\left(-1\right)}
Add 400 to 176.
y=\frac{-\left(-20\right)±24}{2\left(-1\right)}
Take the square root of 576.
y=\frac{20±24}{2\left(-1\right)}
The opposite of 8\times \frac{5}{2}\left(-\frac{1}{2}\right)\times 2 is 20.
y=\frac{20±24}{-2}
Multiply 2 times -3+8\left(-\frac{1}{2}\right)^{2}.
y=\frac{44}{-2}
Now solve the equation y=\frac{20±24}{-2} when ± is plus. Add 20 to 24.
y=-22
Divide 44 by -2.
y=-\frac{4}{-2}
Now solve the equation y=\frac{20±24}{-2} when ± is minus. Subtract 24 from 20.
y=2
Divide -4 by -2.
x=-\frac{1}{2}\left(-22\right)+\frac{5}{2}
There are two solutions for y: -22 and 2. Substitute -22 for y in the equation x=-\frac{1}{2}y+\frac{5}{2} to find the corresponding solution for x that satisfies both equations.
x=11+\frac{5}{2}
Multiply -\frac{1}{2} times -22.
x=\frac{27}{2}
Add -22\left(-\frac{1}{2}\right) to \frac{5}{2}.
x=-\frac{1}{2}\times 2+\frac{5}{2}
Now substitute 2 for y in the equation x=-\frac{1}{2}y+\frac{5}{2} and solve to find the corresponding solution for x that satisfies both equations.
x=-1+\frac{5}{2}
Multiply -\frac{1}{2} times 2.
x=\frac{3}{2}
Add -\frac{1}{2}\times 2 to \frac{5}{2}.
x=\frac{27}{2},y=-22\text{ or }x=\frac{3}{2},y=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}