Solve for x, y
x=9
y=16
Graph
Share
Copied to clipboard
8x+2y=104,x+y=25
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
8x+2y=104
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
8x=-2y+104
Subtract 2y from both sides of the equation.
x=\frac{1}{8}\left(-2y+104\right)
Divide both sides by 8.
x=-\frac{1}{4}y+13
Multiply \frac{1}{8} times -2y+104.
-\frac{1}{4}y+13+y=25
Substitute -\frac{y}{4}+13 for x in the other equation, x+y=25.
\frac{3}{4}y+13=25
Add -\frac{y}{4} to y.
\frac{3}{4}y=12
Subtract 13 from both sides of the equation.
y=16
Divide both sides of the equation by \frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{1}{4}\times 16+13
Substitute 16 for y in x=-\frac{1}{4}y+13. Because the resulting equation contains only one variable, you can solve for x directly.
x=-4+13
Multiply -\frac{1}{4} times 16.
x=9
Add 13 to -4.
x=9,y=16
The system is now solved.
8x+2y=104,x+y=25
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}8&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}104\\25\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}8&2\\1&1\end{matrix}\right))\left(\begin{matrix}8&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\1&1\end{matrix}\right))\left(\begin{matrix}104\\25\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}8&2\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\1&1\end{matrix}\right))\left(\begin{matrix}104\\25\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\1&1\end{matrix}\right))\left(\begin{matrix}104\\25\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8-2}&-\frac{2}{8-2}\\-\frac{1}{8-2}&\frac{8}{8-2}\end{matrix}\right)\left(\begin{matrix}104\\25\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{1}{3}\\-\frac{1}{6}&\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}104\\25\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 104-\frac{1}{3}\times 25\\-\frac{1}{6}\times 104+\frac{4}{3}\times 25\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\16\end{matrix}\right)
Do the arithmetic.
x=9,y=16
Extract the matrix elements x and y.
8x+2y=104,x+y=25
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
8x+2y=104,8x+8y=8\times 25
To make 8x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 8.
8x+2y=104,8x+8y=200
Simplify.
8x-8x+2y-8y=104-200
Subtract 8x+8y=200 from 8x+2y=104 by subtracting like terms on each side of the equal sign.
2y-8y=104-200
Add 8x to -8x. Terms 8x and -8x cancel out, leaving an equation with only one variable that can be solved.
-6y=104-200
Add 2y to -8y.
-6y=-96
Add 104 to -200.
y=16
Divide both sides by -6.
x+16=25
Substitute 16 for y in x+y=25. Because the resulting equation contains only one variable, you can solve for x directly.
x=9
Subtract 16 from both sides of the equation.
x=9,y=16
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}