Solve for p, q
p=-1
q = \frac{51}{7} = 7\frac{2}{7} \approx 7.285714286
Share
Copied to clipboard
2p=-9+7
Consider the second equation. Add 7 to both sides.
2p=-2
Add -9 and 7 to get -2.
p=\frac{-2}{2}
Divide both sides by 2.
p=-1
Divide -2 by 2 to get -1.
8\left(-1\right)+7q=43
Consider the first equation. Insert the known values of variables into the equation.
-8+7q=43
Multiply 8 and -1 to get -8.
7q=43+8
Add 8 to both sides.
7q=51
Add 43 and 8 to get 51.
q=\frac{51}{7}
Divide both sides by 7.
p=-1 q=\frac{51}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}