Skip to main content
Solve for m, n
Tick mark Image

Similar Problems from Web Search

Share

8m+7n=166,8m+6n=156
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
8m+7n=166
Choose one of the equations and solve it for m by isolating m on the left hand side of the equal sign.
8m=-7n+166
Subtract 7n from both sides of the equation.
m=\frac{1}{8}\left(-7n+166\right)
Divide both sides by 8.
m=-\frac{7}{8}n+\frac{83}{4}
Multiply \frac{1}{8} times -7n+166.
8\left(-\frac{7}{8}n+\frac{83}{4}\right)+6n=156
Substitute -\frac{7n}{8}+\frac{83}{4} for m in the other equation, 8m+6n=156.
-7n+166+6n=156
Multiply 8 times -\frac{7n}{8}+\frac{83}{4}.
-n+166=156
Add -7n to 6n.
-n=-10
Subtract 166 from both sides of the equation.
n=10
Divide both sides by -1.
m=-\frac{7}{8}\times 10+\frac{83}{4}
Substitute 10 for n in m=-\frac{7}{8}n+\frac{83}{4}. Because the resulting equation contains only one variable, you can solve for m directly.
m=\frac{-35+83}{4}
Multiply -\frac{7}{8} times 10.
m=12
Add \frac{83}{4} to -\frac{35}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
m=12,n=10
The system is now solved.
8m+7n=166,8m+6n=156
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}8&7\\8&6\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}166\\156\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}8&7\\8&6\end{matrix}\right))\left(\begin{matrix}8&7\\8&6\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}8&7\\8&6\end{matrix}\right))\left(\begin{matrix}166\\156\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}8&7\\8&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}8&7\\8&6\end{matrix}\right))\left(\begin{matrix}166\\156\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}8&7\\8&6\end{matrix}\right))\left(\begin{matrix}166\\156\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{6}{8\times 6-7\times 8}&-\frac{7}{8\times 6-7\times 8}\\-\frac{8}{8\times 6-7\times 8}&\frac{8}{8\times 6-7\times 8}\end{matrix}\right)\left(\begin{matrix}166\\156\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}&\frac{7}{8}\\1&-1\end{matrix}\right)\left(\begin{matrix}166\\156\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}\times 166+\frac{7}{8}\times 156\\166-156\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}12\\10\end{matrix}\right)
Do the arithmetic.
m=12,n=10
Extract the matrix elements m and n.
8m+7n=166,8m+6n=156
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
8m-8m+7n-6n=166-156
Subtract 8m+6n=156 from 8m+7n=166 by subtracting like terms on each side of the equal sign.
7n-6n=166-156
Add 8m to -8m. Terms 8m and -8m cancel out, leaving an equation with only one variable that can be solved.
n=166-156
Add 7n to -6n.
n=10
Add 166 to -156.
8m+6\times 10=156
Substitute 10 for n in 8m+6n=156. Because the resulting equation contains only one variable, you can solve for m directly.
8m+60=156
Multiply 6 times 10.
8m=96
Subtract 60 from both sides of the equation.
m=12
Divide both sides by 8.
m=12,n=10
The system is now solved.