Solve for B, P
B=1200
P=800
Share
Copied to clipboard
8B+6P=14400,6B+15P=19200
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
8B+6P=14400
Choose one of the equations and solve it for B by isolating B on the left hand side of the equal sign.
8B=-6P+14400
Subtract 6P from both sides of the equation.
B=\frac{1}{8}\left(-6P+14400\right)
Divide both sides by 8.
B=-\frac{3}{4}P+1800
Multiply \frac{1}{8} times -6P+14400.
6\left(-\frac{3}{4}P+1800\right)+15P=19200
Substitute -\frac{3P}{4}+1800 for B in the other equation, 6B+15P=19200.
-\frac{9}{2}P+10800+15P=19200
Multiply 6 times -\frac{3P}{4}+1800.
\frac{21}{2}P+10800=19200
Add -\frac{9P}{2} to 15P.
\frac{21}{2}P=8400
Subtract 10800 from both sides of the equation.
P=800
Divide both sides of the equation by \frac{21}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
B=-\frac{3}{4}\times 800+1800
Substitute 800 for P in B=-\frac{3}{4}P+1800. Because the resulting equation contains only one variable, you can solve for B directly.
B=-600+1800
Multiply -\frac{3}{4} times 800.
B=1200
Add 1800 to -600.
B=1200,P=800
The system is now solved.
8B+6P=14400,6B+15P=19200
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}8&6\\6&15\end{matrix}\right)\left(\begin{matrix}B\\P\end{matrix}\right)=\left(\begin{matrix}14400\\19200\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}8&6\\6&15\end{matrix}\right))\left(\begin{matrix}8&6\\6&15\end{matrix}\right)\left(\begin{matrix}B\\P\end{matrix}\right)=inverse(\left(\begin{matrix}8&6\\6&15\end{matrix}\right))\left(\begin{matrix}14400\\19200\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}8&6\\6&15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}B\\P\end{matrix}\right)=inverse(\left(\begin{matrix}8&6\\6&15\end{matrix}\right))\left(\begin{matrix}14400\\19200\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}B\\P\end{matrix}\right)=inverse(\left(\begin{matrix}8&6\\6&15\end{matrix}\right))\left(\begin{matrix}14400\\19200\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}B\\P\end{matrix}\right)=\left(\begin{matrix}\frac{15}{8\times 15-6\times 6}&-\frac{6}{8\times 15-6\times 6}\\-\frac{6}{8\times 15-6\times 6}&\frac{8}{8\times 15-6\times 6}\end{matrix}\right)\left(\begin{matrix}14400\\19200\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}B\\P\end{matrix}\right)=\left(\begin{matrix}\frac{5}{28}&-\frac{1}{14}\\-\frac{1}{14}&\frac{2}{21}\end{matrix}\right)\left(\begin{matrix}14400\\19200\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}B\\P\end{matrix}\right)=\left(\begin{matrix}\frac{5}{28}\times 14400-\frac{1}{14}\times 19200\\-\frac{1}{14}\times 14400+\frac{2}{21}\times 19200\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}B\\P\end{matrix}\right)=\left(\begin{matrix}1200\\800\end{matrix}\right)
Do the arithmetic.
B=1200,P=800
Extract the matrix elements B and P.
8B+6P=14400,6B+15P=19200
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
6\times 8B+6\times 6P=6\times 14400,8\times 6B+8\times 15P=8\times 19200
To make 8B and 6B equal, multiply all terms on each side of the first equation by 6 and all terms on each side of the second by 8.
48B+36P=86400,48B+120P=153600
Simplify.
48B-48B+36P-120P=86400-153600
Subtract 48B+120P=153600 from 48B+36P=86400 by subtracting like terms on each side of the equal sign.
36P-120P=86400-153600
Add 48B to -48B. Terms 48B and -48B cancel out, leaving an equation with only one variable that can be solved.
-84P=86400-153600
Add 36P to -120P.
-84P=-67200
Add 86400 to -153600.
P=800
Divide both sides by -84.
6B+15\times 800=19200
Substitute 800 for P in 6B+15P=19200. Because the resulting equation contains only one variable, you can solve for B directly.
6B+12000=19200
Multiply 15 times 800.
6B=7200
Subtract 12000 from both sides of the equation.
B=1200
Divide both sides by 6.
B=1200,P=800
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}