Solve for t
t = -\frac{39}{2} = -19\frac{1}{2} = -19.5
Share
Copied to clipboard
8t+40-3=6t-2
Use the distributive property to multiply 8 by t+5.
8t+37=6t-2
Subtract 3 from 40 to get 37.
8t+37-6t=-2
Subtract 6t from both sides.
2t+37=-2
Combine 8t and -6t to get 2t.
2t=-2-37
Subtract 37 from both sides.
2t=-39
Subtract 37 from -2 to get -39.
t=\frac{-39}{2}
Divide both sides by 2.
t=-\frac{39}{2}
Fraction \frac{-39}{2} can be rewritten as -\frac{39}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}