\left. \begin{array} { l } { 8 \sqrt { 5 } + ( 4 - \sqrt { 5 } ) ^ { 2 } + ( 5 - 2 \sqrt { 3 } ) ( 2 \sqrt { 3 } + 5 ) } \\ { ( 3 \sqrt { 3 } - 10 ) ^ { 2 } + 60 \sqrt { 3 } - ( 5 \sqrt { 2 } - 1 ) ( 1 + 5 \sqrt { 2 } ) } \end{array} \right.
Sort
34,\ 78
Evaluate
34,\ 78
Share
Copied to clipboard
sort(8\sqrt{5}+16-8\sqrt{5}+\left(\sqrt{5}\right)^{2}+\left(5-2\sqrt{3}\right)\left(2\sqrt{3}+5\right),\left(3\sqrt{3}-10\right)^{2}+60\sqrt{3}-\left(5\sqrt{2}-1\right)\left(1+5\sqrt{2}\right))
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-\sqrt{5}\right)^{2}.
sort(8\sqrt{5}+16-8\sqrt{5}+5+\left(5-2\sqrt{3}\right)\left(2\sqrt{3}+5\right),\left(3\sqrt{3}-10\right)^{2}+60\sqrt{3}-\left(5\sqrt{2}-1\right)\left(1+5\sqrt{2}\right))
The square of \sqrt{5} is 5.
sort(8\sqrt{5}+21-8\sqrt{5}+\left(5-2\sqrt{3}\right)\left(2\sqrt{3}+5\right),\left(3\sqrt{3}-10\right)^{2}+60\sqrt{3}-\left(5\sqrt{2}-1\right)\left(1+5\sqrt{2}\right))
Add 16 and 5 to get 21.
sort(21+\left(5-2\sqrt{3}\right)\left(2\sqrt{3}+5\right),\left(3\sqrt{3}-10\right)^{2}+60\sqrt{3}-\left(5\sqrt{2}-1\right)\left(1+5\sqrt{2}\right))
Combine 8\sqrt{5} and -8\sqrt{5} to get 0.
sort(21+25-\left(2\sqrt{3}\right)^{2},\left(3\sqrt{3}-10\right)^{2}+60\sqrt{3}-\left(5\sqrt{2}-1\right)\left(1+5\sqrt{2}\right))
Consider \left(5-2\sqrt{3}\right)\left(2\sqrt{3}+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
sort(21+25-2^{2}\left(\sqrt{3}\right)^{2},\left(3\sqrt{3}-10\right)^{2}+60\sqrt{3}-\left(5\sqrt{2}-1\right)\left(1+5\sqrt{2}\right))
Expand \left(2\sqrt{3}\right)^{2}.
sort(21+25-4\left(\sqrt{3}\right)^{2},\left(3\sqrt{3}-10\right)^{2}+60\sqrt{3}-\left(5\sqrt{2}-1\right)\left(1+5\sqrt{2}\right))
Calculate 2 to the power of 2 and get 4.
sort(21+25-4\times 3,\left(3\sqrt{3}-10\right)^{2}+60\sqrt{3}-\left(5\sqrt{2}-1\right)\left(1+5\sqrt{2}\right))
The square of \sqrt{3} is 3.
sort(21+25-12,\left(3\sqrt{3}-10\right)^{2}+60\sqrt{3}-\left(5\sqrt{2}-1\right)\left(1+5\sqrt{2}\right))
Multiply 4 and 3 to get 12.
sort(21+13,\left(3\sqrt{3}-10\right)^{2}+60\sqrt{3}-\left(5\sqrt{2}-1\right)\left(1+5\sqrt{2}\right))
Subtract 12 from 25 to get 13.
sort(34,\left(3\sqrt{3}-10\right)^{2}+60\sqrt{3}-\left(5\sqrt{2}-1\right)\left(1+5\sqrt{2}\right))
Add 21 and 13 to get 34.
sort(34,9\left(\sqrt{3}\right)^{2}-60\sqrt{3}+100+60\sqrt{3}-\left(5\sqrt{2}-1\right)\left(1+5\sqrt{2}\right))
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{3}-10\right)^{2}.
sort(34,9\times 3-60\sqrt{3}+100+60\sqrt{3}-\left(5\sqrt{2}-1\right)\left(1+5\sqrt{2}\right))
The square of \sqrt{3} is 3.
sort(34,27-60\sqrt{3}+100+60\sqrt{3}-\left(5\sqrt{2}-1\right)\left(1+5\sqrt{2}\right))
Multiply 9 and 3 to get 27.
sort(34,127-60\sqrt{3}+60\sqrt{3}-\left(5\sqrt{2}-1\right)\left(1+5\sqrt{2}\right))
Add 27 and 100 to get 127.
sort(34,127-\left(5\sqrt{2}-1\right)\left(1+5\sqrt{2}\right))
Combine -60\sqrt{3} and 60\sqrt{3} to get 0.
sort(34,127-\left(25\left(\sqrt{2}\right)^{2}-1\right))
Use the distributive property to multiply 5\sqrt{2}-1 by 1+5\sqrt{2} and combine like terms.
sort(34,127-\left(25\times 2-1\right))
The square of \sqrt{2} is 2.
sort(34,127-\left(50-1\right))
Multiply 25 and 2 to get 50.
sort(34,127-49)
Subtract 1 from 50 to get 49.
sort(34,78)
Subtract 49 from 127 to get 78.
34,78
The list values are already in order.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}