Evaluate
\frac{82}{15}\approx 5.466666667
Factor
\frac{2 \cdot 41}{3 \cdot 5} = 5\frac{7}{15} = 5.466666666666667
Share
Copied to clipboard
\frac{120+7}{15}-\frac{7}{9}-\frac{2\times 9+2}{9}
Multiply 8 and 15 to get 120.
\frac{127}{15}-\frac{7}{9}-\frac{2\times 9+2}{9}
Add 120 and 7 to get 127.
\frac{381}{45}-\frac{35}{45}-\frac{2\times 9+2}{9}
Least common multiple of 15 and 9 is 45. Convert \frac{127}{15} and \frac{7}{9} to fractions with denominator 45.
\frac{381-35}{45}-\frac{2\times 9+2}{9}
Since \frac{381}{45} and \frac{35}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{346}{45}-\frac{2\times 9+2}{9}
Subtract 35 from 381 to get 346.
\frac{346}{45}-\frac{18+2}{9}
Multiply 2 and 9 to get 18.
\frac{346}{45}-\frac{20}{9}
Add 18 and 2 to get 20.
\frac{346}{45}-\frac{100}{45}
Least common multiple of 45 and 9 is 45. Convert \frac{346}{45} and \frac{20}{9} to fractions with denominator 45.
\frac{346-100}{45}
Since \frac{346}{45} and \frac{100}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{246}{45}
Subtract 100 from 346 to get 246.
\frac{82}{15}
Reduce the fraction \frac{246}{45} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}