\left. \begin{array} { l } { 8 \frac { 30 } { 245 } } \\ { \frac { 24 } { 32 } } \\ { \frac { 32 } { 30 } } \end{array} \right.
Sort
\frac{3}{4},\frac{16}{15},\frac{398}{49}
Evaluate
\frac{398}{49},\ \frac{3}{4},\ \frac{16}{15}
Share
Copied to clipboard
sort(\frac{1960+30}{245},\frac{24}{32},\frac{32}{30})
Multiply 8 and 245 to get 1960.
sort(\frac{1990}{245},\frac{24}{32},\frac{32}{30})
Add 1960 and 30 to get 1990.
sort(\frac{398}{49},\frac{24}{32},\frac{32}{30})
Reduce the fraction \frac{1990}{245} to lowest terms by extracting and canceling out 5.
sort(\frac{398}{49},\frac{3}{4},\frac{32}{30})
Reduce the fraction \frac{24}{32} to lowest terms by extracting and canceling out 8.
sort(\frac{398}{49},\frac{3}{4},\frac{16}{15})
Reduce the fraction \frac{32}{30} to lowest terms by extracting and canceling out 2.
\frac{23880}{2940},\frac{2205}{2940},\frac{3136}{2940}
Least common denominator of the numbers in the list \frac{398}{49},\frac{3}{4},\frac{16}{15} is 2940. Convert numbers in the list to fractions with denominator 2940.
\frac{23880}{2940}
To sort the list, start from a single element \frac{23880}{2940}.
\frac{2205}{2940},\frac{23880}{2940}
Insert \frac{2205}{2940} to the appropriate location in the new list.
\frac{2205}{2940},\frac{3136}{2940},\frac{23880}{2940}
Insert \frac{3136}{2940} to the appropriate location in the new list.
\frac{3}{4},\frac{16}{15},\frac{398}{49}
Replace the obtained fractions with the initial values.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}