Solve for a, d
a = \frac{16}{15} = 1\frac{1}{15} \approx 1.066666667
d=\frac{44}{45}\approx 0.977777778
Share
Copied to clipboard
16=15a
Consider the second equation. Combine 3a and 12a to get 15a.
15a=16
Swap sides so that all variable terms are on the left hand side.
a=\frac{16}{15}
Divide both sides by 15.
8=2\times \frac{16}{15}+6d
Consider the first equation. Insert the known values of variables into the equation.
8=\frac{32}{15}+6d
Multiply 2 and \frac{16}{15} to get \frac{32}{15}.
\frac{32}{15}+6d=8
Swap sides so that all variable terms are on the left hand side.
6d=8-\frac{32}{15}
Subtract \frac{32}{15} from both sides.
6d=\frac{88}{15}
Subtract \frac{32}{15} from 8 to get \frac{88}{15}.
d=\frac{\frac{88}{15}}{6}
Divide both sides by 6.
d=\frac{88}{15\times 6}
Express \frac{\frac{88}{15}}{6} as a single fraction.
d=\frac{88}{90}
Multiply 15 and 6 to get 90.
d=\frac{44}{45}
Reduce the fraction \frac{88}{90} to lowest terms by extracting and canceling out 2.
a=\frac{16}{15} d=\frac{44}{45}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}