Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

73x-7y=66,18x+98y=25
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
73x-7y=66
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
73x=7y+66
Add 7y to both sides of the equation.
x=\frac{1}{73}\left(7y+66\right)
Divide both sides by 73.
x=\frac{7}{73}y+\frac{66}{73}
Multiply \frac{1}{73} times 7y+66.
18\left(\frac{7}{73}y+\frac{66}{73}\right)+98y=25
Substitute \frac{7y+66}{73} for x in the other equation, 18x+98y=25.
\frac{126}{73}y+\frac{1188}{73}+98y=25
Multiply 18 times \frac{7y+66}{73}.
\frac{7280}{73}y+\frac{1188}{73}=25
Add \frac{126y}{73} to 98y.
\frac{7280}{73}y=\frac{637}{73}
Subtract \frac{1188}{73} from both sides of the equation.
y=\frac{7}{80}
Divide both sides of the equation by \frac{7280}{73}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{7}{73}\times \frac{7}{80}+\frac{66}{73}
Substitute \frac{7}{80} for y in x=\frac{7}{73}y+\frac{66}{73}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{49}{5840}+\frac{66}{73}
Multiply \frac{7}{73} times \frac{7}{80} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{73}{80}
Add \frac{66}{73} to \frac{49}{5840} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{73}{80},y=\frac{7}{80}
The system is now solved.
73x-7y=66,18x+98y=25
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}73&-7\\18&98\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}66\\25\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}73&-7\\18&98\end{matrix}\right))\left(\begin{matrix}73&-7\\18&98\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}73&-7\\18&98\end{matrix}\right))\left(\begin{matrix}66\\25\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}73&-7\\18&98\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}73&-7\\18&98\end{matrix}\right))\left(\begin{matrix}66\\25\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}73&-7\\18&98\end{matrix}\right))\left(\begin{matrix}66\\25\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{98}{73\times 98-\left(-7\times 18\right)}&-\frac{-7}{73\times 98-\left(-7\times 18\right)}\\-\frac{18}{73\times 98-\left(-7\times 18\right)}&\frac{73}{73\times 98-\left(-7\times 18\right)}\end{matrix}\right)\left(\begin{matrix}66\\25\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{520}&\frac{1}{1040}\\-\frac{9}{3640}&\frac{73}{7280}\end{matrix}\right)\left(\begin{matrix}66\\25\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{520}\times 66+\frac{1}{1040}\times 25\\-\frac{9}{3640}\times 66+\frac{73}{7280}\times 25\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{73}{80}\\\frac{7}{80}\end{matrix}\right)
Do the arithmetic.
x=\frac{73}{80},y=\frac{7}{80}
Extract the matrix elements x and y.
73x-7y=66,18x+98y=25
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
18\times 73x+18\left(-7\right)y=18\times 66,73\times 18x+73\times 98y=73\times 25
To make 73x and 18x equal, multiply all terms on each side of the first equation by 18 and all terms on each side of the second by 73.
1314x-126y=1188,1314x+7154y=1825
Simplify.
1314x-1314x-126y-7154y=1188-1825
Subtract 1314x+7154y=1825 from 1314x-126y=1188 by subtracting like terms on each side of the equal sign.
-126y-7154y=1188-1825
Add 1314x to -1314x. Terms 1314x and -1314x cancel out, leaving an equation with only one variable that can be solved.
-7280y=1188-1825
Add -126y to -7154y.
-7280y=-637
Add 1188 to -1825.
y=\frac{7}{80}
Divide both sides by -7280.
18x+98\times \frac{7}{80}=25
Substitute \frac{7}{80} for y in 18x+98y=25. Because the resulting equation contains only one variable, you can solve for x directly.
18x+\frac{343}{40}=25
Multiply 98 times \frac{7}{80}.
18x=\frac{657}{40}
Subtract \frac{343}{40} from both sides of the equation.
x=\frac{73}{80}
Divide both sides by 18.
x=\frac{73}{80},y=\frac{7}{80}
The system is now solved.