Evaluate
3x^{2}-2x-14
Factor
3\left(x-\frac{1-\sqrt{43}}{3}\right)\left(x-\frac{\sqrt{43}+1}{3}\right)
Graph
Share
Copied to clipboard
3x^{2}-7x-7+5x-7
Combine 7x^{2} and -4x^{2} to get 3x^{2}.
3x^{2}-2x-7-7
Combine -7x and 5x to get -2x.
3x^{2}-2x-14
Subtract 7 from -7 to get -14.
factor(3x^{2}-7x-7+5x-7)
Combine 7x^{2} and -4x^{2} to get 3x^{2}.
factor(3x^{2}-2x-7-7)
Combine -7x and 5x to get -2x.
factor(3x^{2}-2x-14)
Subtract 7 from -7 to get -14.
3x^{2}-2x-14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-14\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3\left(-14\right)}}{2\times 3}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-12\left(-14\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-2\right)±\sqrt{4+168}}{2\times 3}
Multiply -12 times -14.
x=\frac{-\left(-2\right)±\sqrt{172}}{2\times 3}
Add 4 to 168.
x=\frac{-\left(-2\right)±2\sqrt{43}}{2\times 3}
Take the square root of 172.
x=\frac{2±2\sqrt{43}}{2\times 3}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{43}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{43}+2}{6}
Now solve the equation x=\frac{2±2\sqrt{43}}{6} when ± is plus. Add 2 to 2\sqrt{43}.
x=\frac{\sqrt{43}+1}{3}
Divide 2+2\sqrt{43} by 6.
x=\frac{2-2\sqrt{43}}{6}
Now solve the equation x=\frac{2±2\sqrt{43}}{6} when ± is minus. Subtract 2\sqrt{43} from 2.
x=\frac{1-\sqrt{43}}{3}
Divide 2-2\sqrt{43} by 6.
3x^{2}-2x-14=3\left(x-\frac{\sqrt{43}+1}{3}\right)\left(x-\frac{1-\sqrt{43}}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1+\sqrt{43}}{3} for x_{1} and \frac{1-\sqrt{43}}{3} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}