Solve for x, y
x=15075211936407
y=-20557099608092
Graph
Share
Copied to clipboard
7x+4y=23298085122481,5x-2y=116490258898219
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
7x+4y=23298085122481
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
7x=-4y+23298085122481
Subtract 4y from both sides of the equation.
x=\frac{1}{7}\left(-4y+23298085122481\right)
Divide both sides by 7.
x=-\frac{4}{7}y+\frac{23298085122481}{7}
Multiply \frac{1}{7} times -4y+23298085122481.
5\left(-\frac{4}{7}y+\frac{23298085122481}{7}\right)-2y=116490258898219
Substitute \frac{-4y+23298085122481}{7} for x in the other equation, 5x-2y=116490258898219.
-\frac{20}{7}y+\frac{116490425612405}{7}-2y=116490258898219
Multiply 5 times \frac{-4y+23298085122481}{7}.
-\frac{34}{7}y+\frac{116490425612405}{7}=116490258898219
Add -\frac{20y}{7} to -2y.
-\frac{34}{7}y=\frac{698941386675128}{7}
Subtract \frac{116490425612405}{7} from both sides of the equation.
y=-20557099608092
Divide both sides of the equation by -\frac{34}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{4}{7}\left(-20557099608092\right)+\frac{23298085122481}{7}
Substitute -20557099608092 for y in x=-\frac{4}{7}y+\frac{23298085122481}{7}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{82228398432368+23298085122481}{7}
Multiply -\frac{4}{7} times -20557099608092.
x=15075211936407
Add \frac{23298085122481}{7} to \frac{82228398432368}{7} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=15075211936407,y=-20557099608092
The system is now solved.
7x+4y=23298085122481,5x-2y=116490258898219
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}7&4\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}23298085122481\\116490258898219\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}7&4\\5&-2\end{matrix}\right))\left(\begin{matrix}7&4\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&4\\5&-2\end{matrix}\right))\left(\begin{matrix}23298085122481\\116490258898219\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}7&4\\5&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&4\\5&-2\end{matrix}\right))\left(\begin{matrix}23298085122481\\116490258898219\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&4\\5&-2\end{matrix}\right))\left(\begin{matrix}23298085122481\\116490258898219\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7\left(-2\right)-4\times 5}&-\frac{4}{7\left(-2\right)-4\times 5}\\-\frac{5}{7\left(-2\right)-4\times 5}&\frac{7}{7\left(-2\right)-4\times 5}\end{matrix}\right)\left(\begin{matrix}23298085122481\\116490258898219\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&\frac{2}{17}\\\frac{5}{34}&-\frac{7}{34}\end{matrix}\right)\left(\begin{matrix}23298085122481\\116490258898219\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}\times 23298085122481+\frac{2}{17}\times 116490258898219\\\frac{5}{34}\times 23298085122481-\frac{7}{34}\times 116490258898219\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15075211936407\\-20557099608092\end{matrix}\right)
Do the arithmetic.
x=15075211936407,y=-20557099608092
Extract the matrix elements x and y.
7x+4y=23298085122481,5x-2y=116490258898219
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\times 7x+5\times 4y=5\times 23298085122481,7\times 5x+7\left(-2\right)y=7\times 116490258898219
To make 7x and 5x equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 7.
35x+20y=116490425612405,35x-14y=815431812287533
Simplify.
35x-35x+20y+14y=116490425612405-815431812287533
Subtract 35x-14y=815431812287533 from 35x+20y=116490425612405 by subtracting like terms on each side of the equal sign.
20y+14y=116490425612405-815431812287533
Add 35x to -35x. Terms 35x and -35x cancel out, leaving an equation with only one variable that can be solved.
34y=116490425612405-815431812287533
Add 20y to 14y.
34y=-698941386675128
Add 116490425612405 to -815431812287533.
y=-20557099608092
Divide both sides by 34.
5x-2\left(-20557099608092\right)=116490258898219
Substitute -20557099608092 for y in 5x-2y=116490258898219. Because the resulting equation contains only one variable, you can solve for x directly.
5x+41114199216184=116490258898219
Multiply -2 times -20557099608092.
5x=75376059682035
Subtract 41114199216184 from both sides of the equation.
x=15075211936407
Divide both sides by 5.
x=15075211936407,y=-20557099608092
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}