Solve for x, y
x = \frac{31}{7} = 4\frac{3}{7} \approx 4.428571429
y = \frac{669}{14} = 47\frac{11}{14} \approx 47.785714286
Graph
Share
Copied to clipboard
7x=35-4
Consider the first equation. Subtract 4 from both sides.
7x=31
Subtract 4 from 35 to get 31.
x=\frac{31}{7}
Divide both sides by 7.
4y+2\times \frac{31}{7}=200
Consider the second equation. Insert the known values of variables into the equation.
4y+\frac{62}{7}=200
Multiply 2 and \frac{31}{7} to get \frac{62}{7}.
4y=200-\frac{62}{7}
Subtract \frac{62}{7} from both sides.
4y=\frac{1338}{7}
Subtract \frac{62}{7} from 200 to get \frac{1338}{7}.
y=\frac{\frac{1338}{7}}{4}
Divide both sides by 4.
y=\frac{1338}{7\times 4}
Express \frac{\frac{1338}{7}}{4} as a single fraction.
y=\frac{1338}{28}
Multiply 7 and 4 to get 28.
y=\frac{669}{14}
Reduce the fraction \frac{1338}{28} to lowest terms by extracting and canceling out 2.
x=\frac{31}{7} y=\frac{669}{14}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}