Solve for x, y
x = -\frac{25}{11} = -2\frac{3}{11} \approx -2.272727273
y = \frac{95}{11} = 8\frac{7}{11} \approx 8.636363636
Graph
Share
Copied to clipboard
11x=2-27
Consider the second equation. Subtract 27 from both sides.
11x=-25
Subtract 27 from 2 to get -25.
x=-\frac{25}{11}
Divide both sides by 11.
7\left(-\frac{25}{11}\right)+3y=10
Consider the first equation. Insert the known values of variables into the equation.
-\frac{175}{11}+3y=10
Multiply 7 and -\frac{25}{11} to get -\frac{175}{11}.
3y=10+\frac{175}{11}
Add \frac{175}{11} to both sides.
3y=\frac{285}{11}
Add 10 and \frac{175}{11} to get \frac{285}{11}.
y=\frac{\frac{285}{11}}{3}
Divide both sides by 3.
y=\frac{285}{11\times 3}
Express \frac{\frac{285}{11}}{3} as a single fraction.
y=\frac{285}{33}
Multiply 11 and 3 to get 33.
y=\frac{95}{11}
Reduce the fraction \frac{285}{33} to lowest terms by extracting and canceling out 3.
x=-\frac{25}{11} y=\frac{95}{11}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}