Solve for x, y
x=-3
y=4
Graph
Share
Copied to clipboard
7x+2y=-13,-3x-8y=-23
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
7x+2y=-13
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
7x=-2y-13
Subtract 2y from both sides of the equation.
x=\frac{1}{7}\left(-2y-13\right)
Divide both sides by 7.
x=-\frac{2}{7}y-\frac{13}{7}
Multiply \frac{1}{7} times -2y-13.
-3\left(-\frac{2}{7}y-\frac{13}{7}\right)-8y=-23
Substitute \frac{-2y-13}{7} for x in the other equation, -3x-8y=-23.
\frac{6}{7}y+\frac{39}{7}-8y=-23
Multiply -3 times \frac{-2y-13}{7}.
-\frac{50}{7}y+\frac{39}{7}=-23
Add \frac{6y}{7} to -8y.
-\frac{50}{7}y=-\frac{200}{7}
Subtract \frac{39}{7} from both sides of the equation.
y=4
Divide both sides of the equation by -\frac{50}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{2}{7}\times 4-\frac{13}{7}
Substitute 4 for y in x=-\frac{2}{7}y-\frac{13}{7}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-8-13}{7}
Multiply -\frac{2}{7} times 4.
x=-3
Add -\frac{13}{7} to -\frac{8}{7} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-3,y=4
The system is now solved.
7x+2y=-13,-3x-8y=-23
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}7&2\\-3&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-13\\-23\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}7&2\\-3&-8\end{matrix}\right))\left(\begin{matrix}7&2\\-3&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&2\\-3&-8\end{matrix}\right))\left(\begin{matrix}-13\\-23\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}7&2\\-3&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&2\\-3&-8\end{matrix}\right))\left(\begin{matrix}-13\\-23\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&2\\-3&-8\end{matrix}\right))\left(\begin{matrix}-13\\-23\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{7\left(-8\right)-2\left(-3\right)}&-\frac{2}{7\left(-8\right)-2\left(-3\right)}\\-\frac{-3}{7\left(-8\right)-2\left(-3\right)}&\frac{7}{7\left(-8\right)-2\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-13\\-23\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}&\frac{1}{25}\\-\frac{3}{50}&-\frac{7}{50}\end{matrix}\right)\left(\begin{matrix}-13\\-23\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}\left(-13\right)+\frac{1}{25}\left(-23\right)\\-\frac{3}{50}\left(-13\right)-\frac{7}{50}\left(-23\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\4\end{matrix}\right)
Do the arithmetic.
x=-3,y=4
Extract the matrix elements x and y.
7x+2y=-13,-3x-8y=-23
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-3\times 7x-3\times 2y=-3\left(-13\right),7\left(-3\right)x+7\left(-8\right)y=7\left(-23\right)
To make 7x and -3x equal, multiply all terms on each side of the first equation by -3 and all terms on each side of the second by 7.
-21x-6y=39,-21x-56y=-161
Simplify.
-21x+21x-6y+56y=39+161
Subtract -21x-56y=-161 from -21x-6y=39 by subtracting like terms on each side of the equal sign.
-6y+56y=39+161
Add -21x to 21x. Terms -21x and 21x cancel out, leaving an equation with only one variable that can be solved.
50y=39+161
Add -6y to 56y.
50y=200
Add 39 to 161.
y=4
Divide both sides by 50.
-3x-8\times 4=-23
Substitute 4 for y in -3x-8y=-23. Because the resulting equation contains only one variable, you can solve for x directly.
-3x-32=-23
Multiply -8 times 4.
-3x=9
Add 32 to both sides of the equation.
x=-3
Divide both sides by -3.
x=-3,y=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}