Solve for s, g
s=29
g=60
Share
Copied to clipboard
7s+5g=503,5s+5g=445
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
7s+5g=503
Choose one of the equations and solve it for s by isolating s on the left hand side of the equal sign.
7s=-5g+503
Subtract 5g from both sides of the equation.
s=\frac{1}{7}\left(-5g+503\right)
Divide both sides by 7.
s=-\frac{5}{7}g+\frac{503}{7}
Multiply \frac{1}{7} times -5g+503.
5\left(-\frac{5}{7}g+\frac{503}{7}\right)+5g=445
Substitute \frac{-5g+503}{7} for s in the other equation, 5s+5g=445.
-\frac{25}{7}g+\frac{2515}{7}+5g=445
Multiply 5 times \frac{-5g+503}{7}.
\frac{10}{7}g+\frac{2515}{7}=445
Add -\frac{25g}{7} to 5g.
\frac{10}{7}g=\frac{600}{7}
Subtract \frac{2515}{7} from both sides of the equation.
g=60
Divide both sides of the equation by \frac{10}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
s=-\frac{5}{7}\times 60+\frac{503}{7}
Substitute 60 for g in s=-\frac{5}{7}g+\frac{503}{7}. Because the resulting equation contains only one variable, you can solve for s directly.
s=\frac{-300+503}{7}
Multiply -\frac{5}{7} times 60.
s=29
Add \frac{503}{7} to -\frac{300}{7} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
s=29,g=60
The system is now solved.
7s+5g=503,5s+5g=445
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}7&5\\5&5\end{matrix}\right)\left(\begin{matrix}s\\g\end{matrix}\right)=\left(\begin{matrix}503\\445\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}7&5\\5&5\end{matrix}\right))\left(\begin{matrix}7&5\\5&5\end{matrix}\right)\left(\begin{matrix}s\\g\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\5&5\end{matrix}\right))\left(\begin{matrix}503\\445\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}7&5\\5&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}s\\g\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\5&5\end{matrix}\right))\left(\begin{matrix}503\\445\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}s\\g\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\5&5\end{matrix}\right))\left(\begin{matrix}503\\445\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}s\\g\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7\times 5-5\times 5}&-\frac{5}{7\times 5-5\times 5}\\-\frac{5}{7\times 5-5\times 5}&\frac{7}{7\times 5-5\times 5}\end{matrix}\right)\left(\begin{matrix}503\\445\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}s\\g\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\-\frac{1}{2}&\frac{7}{10}\end{matrix}\right)\left(\begin{matrix}503\\445\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}s\\g\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 503-\frac{1}{2}\times 445\\-\frac{1}{2}\times 503+\frac{7}{10}\times 445\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}s\\g\end{matrix}\right)=\left(\begin{matrix}29\\60\end{matrix}\right)
Do the arithmetic.
s=29,g=60
Extract the matrix elements s and g.
7s+5g=503,5s+5g=445
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
7s-5s+5g-5g=503-445
Subtract 5s+5g=445 from 7s+5g=503 by subtracting like terms on each side of the equal sign.
7s-5s=503-445
Add 5g to -5g. Terms 5g and -5g cancel out, leaving an equation with only one variable that can be solved.
2s=503-445
Add 7s to -5s.
2s=58
Add 503 to -445.
s=29
Divide both sides by 2.
5\times 29+5g=445
Substitute 29 for s in 5s+5g=445. Because the resulting equation contains only one variable, you can solve for g directly.
145+5g=445
Multiply 5 times 29.
5g=300
Subtract 145 from both sides of the equation.
g=60
Divide both sides by 5.
s=29,g=60
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}