Solve for c, n
c = -\frac{59}{8} = -7\frac{3}{8} = -7.375
n = -\frac{22}{3} = -7\frac{1}{3} \approx -7.333333333
Share
Copied to clipboard
7c+9c+15=-103
Consider the first equation. Use the distributive property to multiply 3 by 3c+5.
16c+15=-103
Combine 7c and 9c to get 16c.
16c=-103-15
Subtract 15 from both sides.
16c=-118
Subtract 15 from -103 to get -118.
c=\frac{-118}{16}
Divide both sides by 16.
c=-\frac{59}{8}
Reduce the fraction \frac{-118}{16} to lowest terms by extracting and canceling out 2.
-3n+12n+45=-21
Consider the second equation. Use the distributive property to multiply 3 by 4n+15.
9n+45=-21
Combine -3n and 12n to get 9n.
9n=-21-45
Subtract 45 from both sides.
9n=-66
Subtract 45 from -21 to get -66.
n=\frac{-66}{9}
Divide both sides by 9.
n=-\frac{22}{3}
Reduce the fraction \frac{-66}{9} to lowest terms by extracting and canceling out 3.
c=-\frac{59}{8} n=-\frac{22}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}