Solve for y, x
x=3
y=-1
Graph
Share
Copied to clipboard
66y-14x+108=0,54y-22x+120=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
66y-14x+108=0
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
66y-14x=-108
Subtract 108 from both sides of the equation.
66y=14x-108
Add 14x to both sides of the equation.
y=\frac{1}{66}\left(14x-108\right)
Divide both sides by 66.
y=\frac{7}{33}x-\frac{18}{11}
Multiply \frac{1}{66} times 14x-108.
54\left(\frac{7}{33}x-\frac{18}{11}\right)-22x+120=0
Substitute \frac{7x}{33}-\frac{18}{11} for y in the other equation, 54y-22x+120=0.
\frac{126}{11}x-\frac{972}{11}-22x+120=0
Multiply 54 times \frac{7x}{33}-\frac{18}{11}.
-\frac{116}{11}x-\frac{972}{11}+120=0
Add \frac{126x}{11} to -22x.
-\frac{116}{11}x+\frac{348}{11}=0
Add -\frac{972}{11} to 120.
-\frac{116}{11}x=-\frac{348}{11}
Subtract \frac{348}{11} from both sides of the equation.
x=3
Divide both sides of the equation by -\frac{116}{11}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{7}{33}\times 3-\frac{18}{11}
Substitute 3 for x in y=\frac{7}{33}x-\frac{18}{11}. Because the resulting equation contains only one variable, you can solve for y directly.
y=\frac{7-18}{11}
Multiply \frac{7}{33} times 3.
y=-1
Add -\frac{18}{11} to \frac{7}{11} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=-1,x=3
The system is now solved.
66y-14x+108=0,54y-22x+120=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}66&-14\\54&-22\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-108\\-120\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}66&-14\\54&-22\end{matrix}\right))\left(\begin{matrix}66&-14\\54&-22\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}66&-14\\54&-22\end{matrix}\right))\left(\begin{matrix}-108\\-120\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}66&-14\\54&-22\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}66&-14\\54&-22\end{matrix}\right))\left(\begin{matrix}-108\\-120\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}66&-14\\54&-22\end{matrix}\right))\left(\begin{matrix}-108\\-120\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{22}{66\left(-22\right)-\left(-14\times 54\right)}&-\frac{-14}{66\left(-22\right)-\left(-14\times 54\right)}\\-\frac{54}{66\left(-22\right)-\left(-14\times 54\right)}&\frac{66}{66\left(-22\right)-\left(-14\times 54\right)}\end{matrix}\right)\left(\begin{matrix}-108\\-120\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{11}{348}&-\frac{7}{348}\\\frac{9}{116}&-\frac{11}{116}\end{matrix}\right)\left(\begin{matrix}-108\\-120\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{11}{348}\left(-108\right)-\frac{7}{348}\left(-120\right)\\\frac{9}{116}\left(-108\right)-\frac{11}{116}\left(-120\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
Do the arithmetic.
y=-1,x=3
Extract the matrix elements y and x.
66y-14x+108=0,54y-22x+120=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
54\times 66y+54\left(-14\right)x+54\times 108=0,66\times 54y+66\left(-22\right)x+66\times 120=0
To make 66y and 54y equal, multiply all terms on each side of the first equation by 54 and all terms on each side of the second by 66.
3564y-756x+5832=0,3564y-1452x+7920=0
Simplify.
3564y-3564y-756x+1452x+5832-7920=0
Subtract 3564y-1452x+7920=0 from 3564y-756x+5832=0 by subtracting like terms on each side of the equal sign.
-756x+1452x+5832-7920=0
Add 3564y to -3564y. Terms 3564y and -3564y cancel out, leaving an equation with only one variable that can be solved.
696x+5832-7920=0
Add -756x to 1452x.
696x-2088=0
Add 5832 to -7920.
696x=2088
Add 2088 to both sides of the equation.
x=3
Divide both sides by 696.
54y-22\times 3+120=0
Substitute 3 for x in 54y-22x+120=0. Because the resulting equation contains only one variable, you can solve for y directly.
54y-66+120=0
Multiply -22 times 3.
54y+54=0
Add -66 to 120.
54y=-54
Subtract 54 from both sides of the equation.
y=-1
Divide both sides by 54.
y=-1,x=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}