Solve for a, b
a=-\frac{1040\sqrt{337}}{337}\approx -56.652409913\text{, }b=-\frac{585\sqrt{337}}{337}\approx -31.866980576
a=\frac{1040\sqrt{337}}{337}\approx 56.652409913\text{, }b=\frac{585\sqrt{337}}{337}\approx 31.866980576
Share
Copied to clipboard
4225=a^{2}+b^{2}
Consider the first equation. Calculate 65 to the power of 2 and get 4225.
a^{2}+b^{2}=4225
Swap sides so that all variable terms are on the left hand side.
9a=16b
Consider the second equation. Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9b, the least common multiple of b,9.
a=\frac{16}{9}b
Divide both sides by 9.
b^{2}+\left(\frac{16}{9}b\right)^{2}=4225
Substitute \frac{16}{9}b for a in the other equation, b^{2}+a^{2}=4225.
b^{2}+\frac{256}{81}b^{2}=4225
Square \frac{16}{9}b.
\frac{337}{81}b^{2}=4225
Add b^{2} to \frac{256}{81}b^{2}.
\frac{337}{81}b^{2}-4225=0
Subtract 4225 from both sides of the equation.
b=\frac{0±\sqrt{0^{2}-4\times \frac{337}{81}\left(-4225\right)}}{2\times \frac{337}{81}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{16}{9}\right)^{2} for a, 1\times 0\times \frac{16}{9}\times 2 for b, and -4225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times \frac{337}{81}\left(-4225\right)}}{2\times \frac{337}{81}}
Square 1\times 0\times \frac{16}{9}\times 2.
b=\frac{0±\sqrt{-\frac{1348}{81}\left(-4225\right)}}{2\times \frac{337}{81}}
Multiply -4 times 1+1\times \left(\frac{16}{9}\right)^{2}.
b=\frac{0±\sqrt{\frac{5695300}{81}}}{2\times \frac{337}{81}}
Multiply -\frac{1348}{81} times -4225.
b=\frac{0±\frac{130\sqrt{337}}{9}}{2\times \frac{337}{81}}
Take the square root of \frac{5695300}{81}.
b=\frac{0±\frac{130\sqrt{337}}{9}}{\frac{674}{81}}
Multiply 2 times 1+1\times \left(\frac{16}{9}\right)^{2}.
b=\frac{585\sqrt{337}}{337}
Now solve the equation b=\frac{0±\frac{130\sqrt{337}}{9}}{\frac{674}{81}} when ± is plus.
b=-\frac{585\sqrt{337}}{337}
Now solve the equation b=\frac{0±\frac{130\sqrt{337}}{9}}{\frac{674}{81}} when ± is minus.
a=\frac{16}{9}\times \frac{585\sqrt{337}}{337}
There are two solutions for b: \frac{585\sqrt{337}}{337} and -\frac{585\sqrt{337}}{337}. Substitute \frac{585\sqrt{337}}{337} for b in the equation a=\frac{16}{9}b to find the corresponding solution for a that satisfies both equations.
a=\frac{16\times \frac{585\sqrt{337}}{337}}{9}
Multiply \frac{16}{9} times \frac{585\sqrt{337}}{337}.
a=\frac{16}{9}\left(-\frac{585\sqrt{337}}{337}\right)
Now substitute -\frac{585\sqrt{337}}{337} for b in the equation a=\frac{16}{9}b and solve to find the corresponding solution for a that satisfies both equations.
a=\frac{16\left(-\frac{585\sqrt{337}}{337}\right)}{9}
Multiply \frac{16}{9} times -\frac{585\sqrt{337}}{337}.
a=\frac{16\times \frac{585\sqrt{337}}{337}}{9},b=\frac{585\sqrt{337}}{337}\text{ or }a=\frac{16\left(-\frac{585\sqrt{337}}{337}\right)}{9},b=-\frac{585\sqrt{337}}{337}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}