Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

62x+y=44,34x-y=36
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
62x+y=44
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
62x=-y+44
Subtract y from both sides of the equation.
x=\frac{1}{62}\left(-y+44\right)
Divide both sides by 62.
x=-\frac{1}{62}y+\frac{22}{31}
Multiply \frac{1}{62} times -y+44.
34\left(-\frac{1}{62}y+\frac{22}{31}\right)-y=36
Substitute -\frac{y}{62}+\frac{22}{31} for x in the other equation, 34x-y=36.
-\frac{17}{31}y+\frac{748}{31}-y=36
Multiply 34 times -\frac{y}{62}+\frac{22}{31}.
-\frac{48}{31}y+\frac{748}{31}=36
Add -\frac{17y}{31} to -y.
-\frac{48}{31}y=\frac{368}{31}
Subtract \frac{748}{31} from both sides of the equation.
y=-\frac{23}{3}
Divide both sides of the equation by -\frac{48}{31}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{1}{62}\left(-\frac{23}{3}\right)+\frac{22}{31}
Substitute -\frac{23}{3} for y in x=-\frac{1}{62}y+\frac{22}{31}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{23}{186}+\frac{22}{31}
Multiply -\frac{1}{62} times -\frac{23}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{5}{6}
Add \frac{22}{31} to \frac{23}{186} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{5}{6},y=-\frac{23}{3}
The system is now solved.
62x+y=44,34x-y=36
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}62&1\\34&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}44\\36\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}62&1\\34&-1\end{matrix}\right))\left(\begin{matrix}62&1\\34&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}62&1\\34&-1\end{matrix}\right))\left(\begin{matrix}44\\36\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}62&1\\34&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}62&1\\34&-1\end{matrix}\right))\left(\begin{matrix}44\\36\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}62&1\\34&-1\end{matrix}\right))\left(\begin{matrix}44\\36\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{62\left(-1\right)-34}&-\frac{1}{62\left(-1\right)-34}\\-\frac{34}{62\left(-1\right)-34}&\frac{62}{62\left(-1\right)-34}\end{matrix}\right)\left(\begin{matrix}44\\36\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{96}&\frac{1}{96}\\\frac{17}{48}&-\frac{31}{48}\end{matrix}\right)\left(\begin{matrix}44\\36\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{96}\times 44+\frac{1}{96}\times 36\\\frac{17}{48}\times 44-\frac{31}{48}\times 36\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\\-\frac{23}{3}\end{matrix}\right)
Do the arithmetic.
x=\frac{5}{6},y=-\frac{23}{3}
Extract the matrix elements x and y.
62x+y=44,34x-y=36
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
34\times 62x+34y=34\times 44,62\times 34x+62\left(-1\right)y=62\times 36
To make 62x and 34x equal, multiply all terms on each side of the first equation by 34 and all terms on each side of the second by 62.
2108x+34y=1496,2108x-62y=2232
Simplify.
2108x-2108x+34y+62y=1496-2232
Subtract 2108x-62y=2232 from 2108x+34y=1496 by subtracting like terms on each side of the equal sign.
34y+62y=1496-2232
Add 2108x to -2108x. Terms 2108x and -2108x cancel out, leaving an equation with only one variable that can be solved.
96y=1496-2232
Add 34y to 62y.
96y=-736
Add 1496 to -2232.
y=-\frac{23}{3}
Divide both sides by 96.
34x-\left(-\frac{23}{3}\right)=36
Substitute -\frac{23}{3} for y in 34x-y=36. Because the resulting equation contains only one variable, you can solve for x directly.
34x=\frac{85}{3}
Subtract \frac{23}{3} from both sides of the equation.
x=\frac{5}{6}
Divide both sides by 34.
x=\frac{5}{6},y=-\frac{23}{3}
The system is now solved.