Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

60x+60.85y=156,x+y=170
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
60x+60.85y=156
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
60x=-60.85y+156
Subtract \frac{1217y}{20} from both sides of the equation.
x=\frac{1}{60}\left(-60.85y+156\right)
Divide both sides by 60.
x=-\frac{1217}{1200}y+\frac{13}{5}
Multiply \frac{1}{60} times -\frac{1217y}{20}+156.
-\frac{1217}{1200}y+\frac{13}{5}+y=170
Substitute -\frac{1217y}{1200}+\frac{13}{5} for x in the other equation, x+y=170.
-\frac{17}{1200}y+\frac{13}{5}=170
Add -\frac{1217y}{1200} to y.
-\frac{17}{1200}y=\frac{837}{5}
Subtract \frac{13}{5} from both sides of the equation.
y=-\frac{200880}{17}
Divide both sides of the equation by -\frac{17}{1200}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{1217}{1200}\left(-\frac{200880}{17}\right)+\frac{13}{5}
Substitute -\frac{200880}{17} for y in x=-\frac{1217}{1200}y+\frac{13}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{1018629}{85}+\frac{13}{5}
Multiply -\frac{1217}{1200} times -\frac{200880}{17} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{203770}{17}
Add \frac{13}{5} to \frac{1018629}{85} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{203770}{17},y=-\frac{200880}{17}
The system is now solved.
60x+60.85y=156,x+y=170
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}60&60.85\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}156\\170\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}60&60.85\\1&1\end{matrix}\right))\left(\begin{matrix}60&60.85\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&60.85\\1&1\end{matrix}\right))\left(\begin{matrix}156\\170\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}60&60.85\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&60.85\\1&1\end{matrix}\right))\left(\begin{matrix}156\\170\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&60.85\\1&1\end{matrix}\right))\left(\begin{matrix}156\\170\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{60-60.85}&-\frac{60.85}{60-60.85}\\-\frac{1}{60-60.85}&\frac{60}{60-60.85}\end{matrix}\right)\left(\begin{matrix}156\\170\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{17}&\frac{1217}{17}\\\frac{20}{17}&-\frac{1200}{17}\end{matrix}\right)\left(\begin{matrix}156\\170\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{17}\times 156+\frac{1217}{17}\times 170\\\frac{20}{17}\times 156-\frac{1200}{17}\times 170\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{203770}{17}\\-\frac{200880}{17}\end{matrix}\right)
Do the arithmetic.
x=\frac{203770}{17},y=-\frac{200880}{17}
Extract the matrix elements x and y.
60x+60.85y=156,x+y=170
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
60x+60.85y=156,60x+60y=60\times 170
To make 60x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 60.
60x+60.85y=156,60x+60y=10200
Simplify.
60x-60x+60.85y-60y=156-10200
Subtract 60x+60y=10200 from 60x+60.85y=156 by subtracting like terms on each side of the equal sign.
60.85y-60y=156-10200
Add 60x to -60x. Terms 60x and -60x cancel out, leaving an equation with only one variable that can be solved.
0.85y=156-10200
Add \frac{1217y}{20} to -60y.
0.85y=-10044
Add 156 to -10200.
y=-\frac{200880}{17}
Divide both sides of the equation by 0.85, which is the same as multiplying both sides by the reciprocal of the fraction.
x-\frac{200880}{17}=170
Substitute -\frac{200880}{17} for y in x+y=170. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{203770}{17}
Add \frac{200880}{17} to both sides of the equation.
x=\frac{203770}{17},y=-\frac{200880}{17}
The system is now solved.